90.50 MHz SAW Filter

SF90.5B

- Surface Acoustic Wave Resonator Filter
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- F-16 Metal Thru-Hole Package

Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
Input Power Level	$P_{\rm in}$	0	dBm				
DC Voltage VDC Between Any Two Pins	V _{DC}	30	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C				

Electrical Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (25°C)		fc	NS	90.50	NS	MHz
Insertion Loss at fc		IL	-	2.0	4.0	dB
3dB Bandwidth		ВWз	45	62	-	KHz
Passband Ripple (fc ± 15 KHz)		Δα	-	0.2	1.0	dB
Stopband Attenuation	<i>fc</i> ± 60 KHz		15	21	-	dB
	fc ± 120 KHz fc - 930fc - 890 KHz		42	47	-	dB
		α	55	62	-	dB
	fc - 4020 fc - 3980 KHz		70	80	-	dB
Temperature Stability	Turnover Temperature	То	25	-	55	°C
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C
Group Delay	Absolute at fc	τ	10	15	18	μSec
	Deviation $fc \pm 10$ KHz	$\Delta \tau$	-	2.0	8.0	μSec
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ

NS = Not Specified

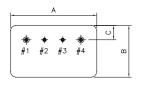
Notes:

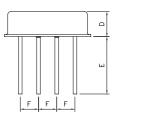
- 1. The frequency f_{C} is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

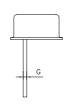
- 5. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery please contact our sales offices or e-mail <u>sales@vanlong.com</u>.

Phone: +86 10 6301 4184

Fax: +86 10 6301 9167


Email: sales@vanlong.com


 $\ensuremath{\textcircled{}^{\circ}}$ December 2005 by Vanlong Technology Co., Ltd.



90.50 MHz SAW Filter

Package Dimensions (F-16)

Electrical Connections

Terminals	Connection
1	Input / Output
2	Case Ground
3	Case Ground
4	Output / Input

Package Dimensions

Test Circuit

mh

L

Dimensions	Nom (mm)	Dimensions	Nom (mm)
А	12.0	E	5.0
В	7.2	F	2.54
С	2.0	G	0.5
D	3.5		

L = 12~20 turns of 0.51mm insulated copper, 4.0mm ID

L

mhn

Ink Marking Color: Black or Blue

Typical Frequency Response

▶1:Transmission /M Log Mag 10.0 dB/ Ref -3.50 dB ▶2:0ff Center 90.500 MHz Span 1.000 MHz

Phone: +86 10 6301 4184 Fax: +86 10 6301 9167 Email: sales@vanlong.com

 $\ensuremath{\textcircled{\sc c}}$ December 2005 by Vanlong Technology Co., Ltd.