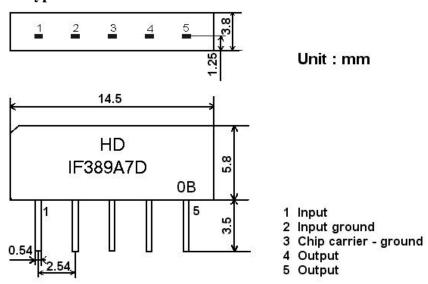
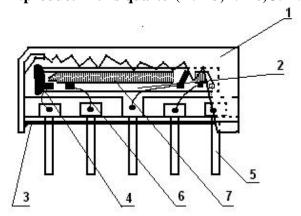
1.SCOPE


SHOULDER'S SAW filter series have broad line up products meeting all broadcast standard including NTSC,PAL and SECAM systems. These filters are composed of two interdigital transducers on a single-crystal. piezoelectrical chip. they are used in electronic equipments such as TV and so on.

2.Construction

2.1 Dimension and materials


Manufacturer's name: SHOULDER ELECTRONICS Co. LTD(CHINA)

Type : IF389A7D


0: year(0,1,2,3,4,5,6,7,8,9)

B:product in this quarter(A:1~3,B:4~6,C:7~9,D:10~12)

Components	Materials
1.Outer casing	PPS
2.Substrate	Lithium niobate
3.Base	Epoxy resin
4.Absorber	Epoxy resin
5.Lead	Cu alloy+Au plate
6.Bonding wire	AlSi alloy
7.Electrode	Al

2.2. Circuit construction, measurement circuit

Test circuit for SIP-5 filter Input impedance of the symmetrical post-amplifier: 2 k Ω in parallel with 3 pF

3. Characteristics

Standard atmospheric conditions

Unless otherwise specified , the standard rang of atmospheric conditions for making measurements and tests is as follows;

Ambient temperature : 15 to 35 Relative humidity : 25% to 85%

Air pressure : 86kPa to 106kPa

Operating temperature rang

Operating temperature rang is the rang of ambient temperatures in which the filter can be

operated continuously. $-10 \sim +60$

Storage temperature rang

Storage temperature rang is the rang of ambient temperatures at which the filter can be stored

without damage.

Conditions are as specified elsewhere in these specifications. $-40 \sim +70$

Reference temperature +25

3.1 Maximum Rating

DC voltage	VDC	12	V	Between any terminals
AC voltage	Vpp	10	V	Between any terminals

3.2 Electrical Characteristics

Source impedance Zs=50

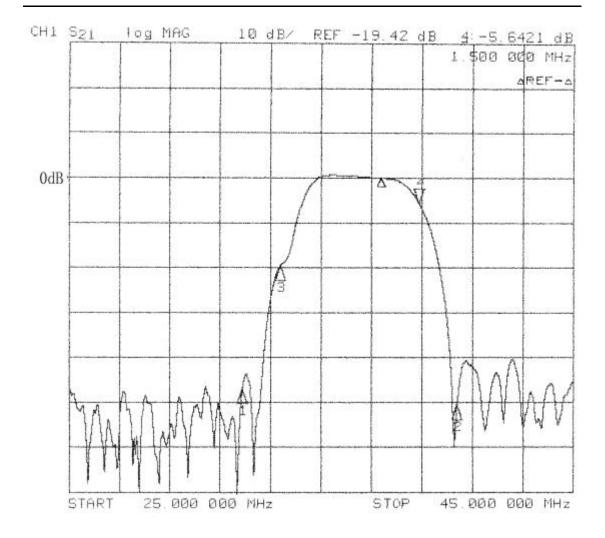
 $\label{eq:ZL=2k} Load \ impedance \qquad \qquad Z_L \!\!=\!\! 2k \ \ /\!/3pF \qquad \qquad T_A \!\!=\!\! 25$

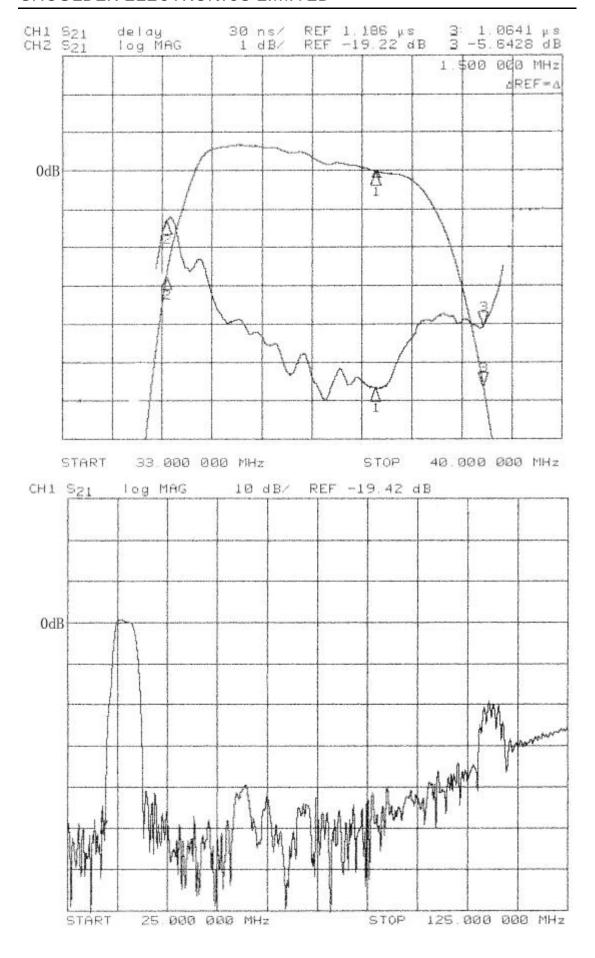
Item	S	Freq	Min	typ	max	
Insertion att Reference		37.40MHz	14.8	16.8	18.8	dB
	38.90MHz	4.4	5.9	7.4	dB	
	34.47MHz	1.3	2.8	4.3	dB	
	D.L.	33.40MHz	17.6	19.6	21.6	dB
D-1-4:		30.90MHz	40.0	55.0		dB
Relative attenuation	31.90MHz	40.0	50.0		dB	
		32.40MHz	42.0	54.0		dB
		40.40MHz	40.0	52.0		dB
		41.40MHz	40.0	54.0		dB
		31.90MHz	35.0	43.0		dB
Sidelobe	40.40~45.00MHz		35.0	40.0		dB
Temperature coefficient			-72		Ppm/k	

3.3 Environmental Performance Characteristics

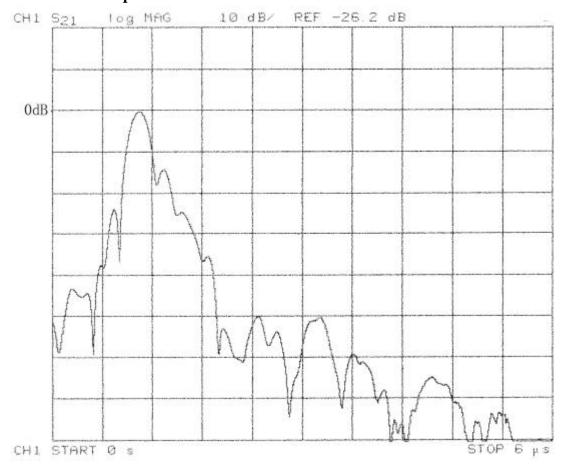
Item Test condition	Allowable change of absolute Level at center frequency(dB)
High temperature test 70 1000H	< 1.0
Low temperature test -40 1000H	< 1.0
Humidity test 40 90-95% 1000H	< 1.0
Thermal shock -20 ==25 ==80 20 cycle 30M 10M 30M	< 1.0
Solder temperature test Sold temp.260 for 10 sec.	< 1.0
Soldering Immerse the pins melt solder at 260 +5/-0 for 5 sec.	More then 95% of total area of the pins should be covered with solder

3.4 Mechanical Test


011110110111011			
	Item	Allowable change of absolute	
	Test condition	Level at center frequency(dB)	
	Vibration test		
	600-3300rpm amplitude 1.5mm	<1.0	
	3 directions 2 H each		


Drop test On maple plate from 1 m high 3 times	<1.0
Lead pull test Pull with 1 kg force for 30 seconds	<1.0
Lead bend test 90° bending with 500g weigh 2 times	<1.0

3.5 Voltage Discharge Test


Item	Allowable change of absolute
Test condition	Level at center frequency(dB)
Surge test	
Between any two electrode	
100V 1000pF 4Mohm	<1.0

3.6 Frequency response

Time domain response:

