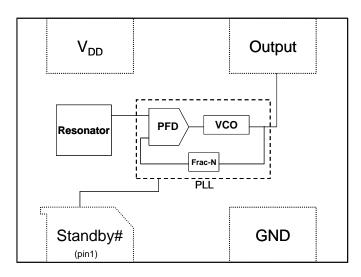
DSC8002 Series

1.8 to 3.3V

PureSilcon™ Programmable CMOS Oscillator

www.discera.com


General Description

The DSC8002 is a programmable MEMS based PureSilicon™ Oscillator. Using the DragonFly™ or TimeFlash™ handheld programmer, the end user can program the DSC8002 within seconds to any frequency from 1 to 150MHz in increments of 100Hz (up to four decimal point resolution). The nominal operational range spans from 1.8 to 3.3 Volts, without any need for additional external components, providing ease of use and flexibility in multi-voltage applications.

The DSC8002 incorporates an all silicon resonator that is extremely robust and nearly immune to stress related fractures, common to crystal based oscillators. Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC8002 ideal for rugged, industrial, and portable applications where stress, shock, and vibration can damage quartz crystal based systems.

Available in industry standard packages, the DSC8002 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

Block Diagram

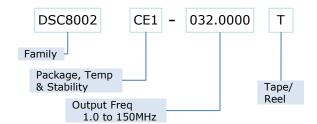
Features

- Frequency Range: 1 to 150MHz
- Exceptional Stability over Temperature
- Operating voltage
 - 1.8 to 3.3V (nominal)
 - 1.65 to 3.60V (absolute max)
- Operating Temperature Range
 - o Industrial -40°C to 85°C
 - o Ext. Commercial -20°C to 70°C
 - Commercial 0°C to 70°C
- Low Operating and Standby Current
 - 3mA Operating (40MHz)
 - 1uA Standby
- Ultra Miniature Footprint
 - o 2.5 x 2.0 x 0.85 mm
 - o 3.2 x 2.5 x 0.85 mm
 - o 5.0 x 3.2 x 0.85 mm
 - o 7.0 x 5.0 x 0.85 mm
- Excellent shock and Vibration Resistance
- Lead Free, RoHS & Reach SVHC Compliant
- Handheld programmer available for purchase

Benefits

- Pin for pin "drop in" replacement for industry standard oscillators
- Semiconductor level reliability, significantly higher than quartz
- Frequency Resolution to 4 decimals
- Fully Programmable Operating Voltage and Frequency
- Longer Battery Life / Reduced Power
- Compact Plastic package
- Cost Effective

Applications


- Mobile Applications
- Consumer Electronics
- Portable Electronics
- CCD Clock for VTR Cameras
- Low Profile Applications
- Industrial

Absolute Maximum Ratings¹

300101001110011111111111111111111111111					
Item	Min.	Max	Unit	Condition	
Supply Voltage	-0.3	+4.0	V		
Input Voltage	-0.3	VDD+0.3	V		
Junction Temp	-	+150	°C		
Storage Temp	-55	+150	°C		
Soldering Temp	-	+260	°C	40 sec max.	
ESD	-		V		
нвм		2000			
MM		200			
CDM		500			

Ordering Code

^{*} See Ordering Information for details

Recommended Operating Conditions

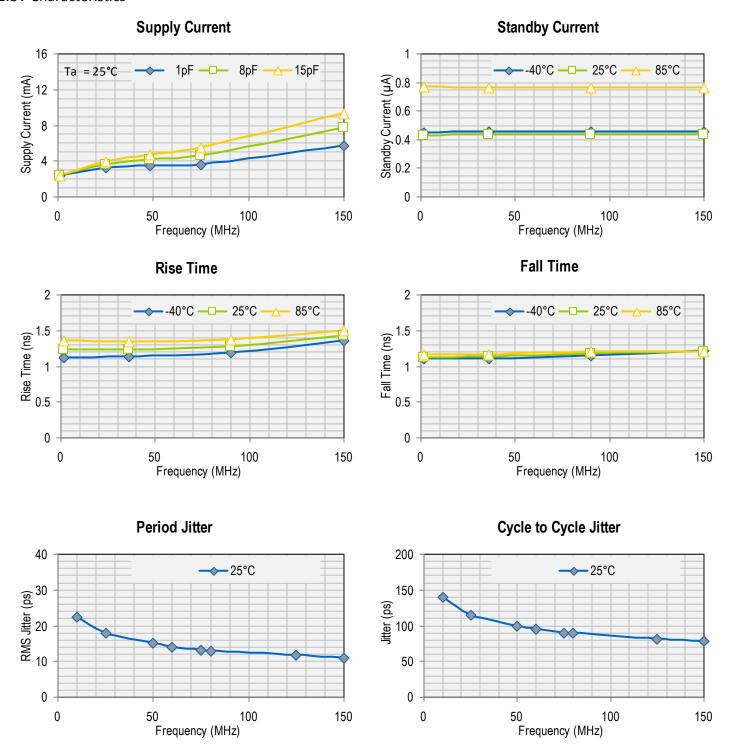
Parameter	Symbol	Range		
Supply Voltage	V_{DD}	1.65 - 3.60V		
Output Load	Z_{L}	R>10KΩ, C≤15pF		
Operating Temperature Option 1 Option 2 Option 3	Т	-40 - +85 °C -20 - +70 °C 0 - +70 °C		

Specifications

Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
Frequency	f_0	Single Frequency		1		150	MHz
Frequency Tolerance Option 1 Option 2 Option 3	Δf	-40°C to +85°C -20°C to +70°C 0°C to +70°C				±25,±50 ±25,±50 ±25,±50	ppm
Supply Current, no load	$ m I_{DD}$	$C_L=0p$ $R_L=\infty$ $T=25$ °C	1 to 40MHz 40 to 80MHz 80 to 125MHz 125 to 150MHz		3 4 5 6	10	mA
Supply Current, standby	I_{DD}	T=25°C				1.0	uA
Output Logic Levels Output logic high Output logic low	V _{он} V _{ol}	C _L =15pF		0.8*V _{DD}		- 0.2*V _{DD}	Volts
Output Transition time Rise Time Fall Time	t _R t _F	C _L =15pF; T=25°C 20%/80%*V _{DD}			1.3 1.3	2 2	ns
Output Startup Time ²	t _{su}	T=25°C			3	10	ms
Output Disable Time	t _{DA}				20	100	ns
Output Duty Cycle	SYM			45		55	%
Input Logic Levels Input logic high Input logic low	V _{IH} V _{IL}			0.75*V _{DD}		- 0.25* V _{DD}	Volts
Jitter, Cycle to Cycle	J _{CC}	F = 100MHz ³			95		ps

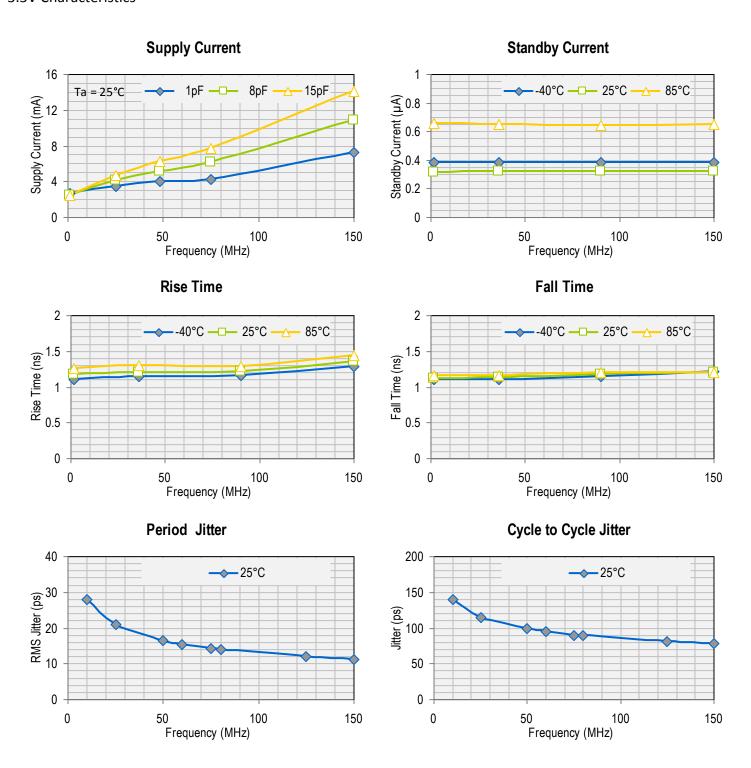
Notes:

- Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated beyond these limits.
- 2. Output frequency to within 100ppm of final stable output frequency.
- 3. See typical cycle to cycle jitter graph for frequency dependence.

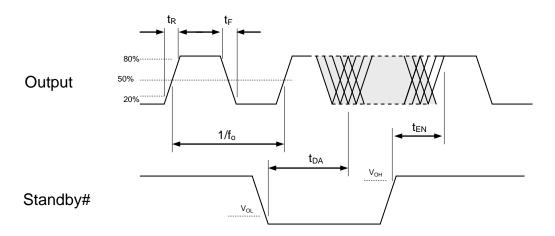

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Discera, Inc. Discera Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 2 | 2010-3-18 MK-Q-B-P-D-031809-06-6

Nominal Performance Characteristics


1.8V Characteristics

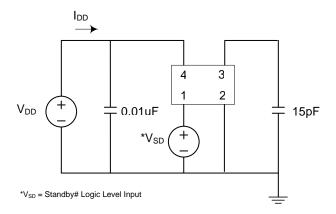
Page 3 | 2010-3-18 MK-Q-B-P-D-031809-06-6



3.3V Characteristics

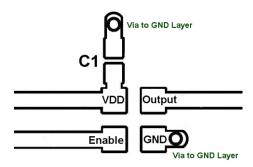
MK-Q-B-P-D-031809-06-6

Output Waveform

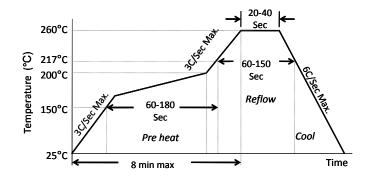


1.8 to 3.3V

Standby Function


Standby# (pin 1)	Output (pin 3)		
Hi Level	Output ON		
Open (no connect)	Output ON		
Low Level	High Impedance		

Test Circuit



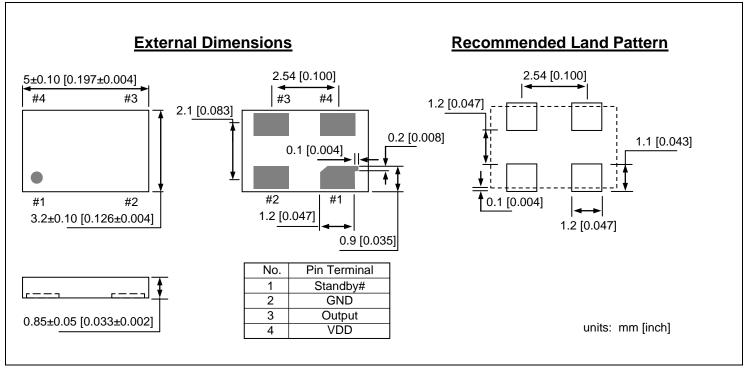
Board Layout (recommended)

Solder Reflow Profile

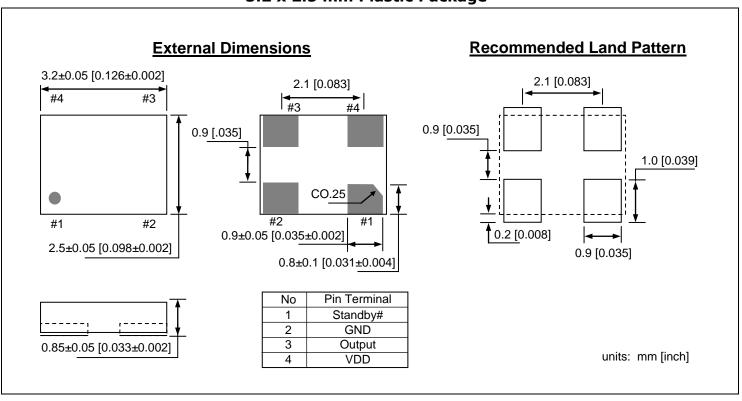
MSL 1 @ 260°C refer to JSTD-020C				
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.			
Preheat Time 150°C to 200°C	60-180 Sec			
Time maintained above 217°C	60-150 Sec			
Peak Temperature	255-260°C			
Time within 5°C of actual Peak	20-40 Sec			
Ramp-Down Rate	6°C/Sec Max.			
Time 25°C to Peak Temperature	8 min Max.			

Package Dimensions

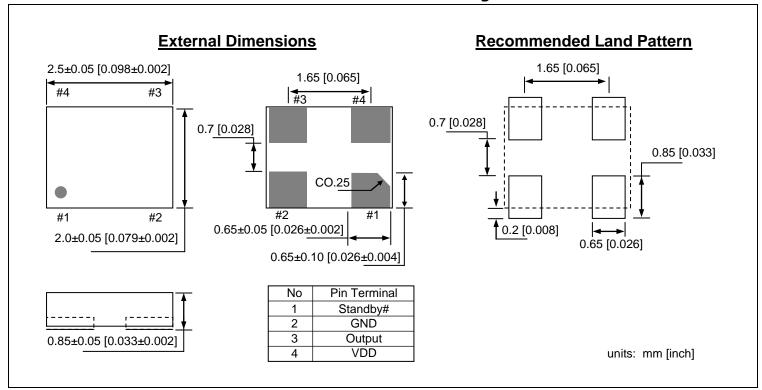
7.0 x 5.0 mm Plastic Package



All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Discera, Inc. Discera Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.


Page 6 | 2010-3-18 MK-Q-B-P-D-031809-06-6

5.0 x 3.2 mm Plastic Package


3.2 x 2.5 mm Plastic Package

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Discera, Inc. Discera Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use. Page 7 | 2010-3-18 MK-Q-B-P-D-031809-06-6

1.8 to 3.3V PureSi

2.5 x 2.0 mm Plastic Package

Ordering Information

DSC8002 PTS - xxx.xxxx T

PART NUMBERING GUIDE					
Package (Plastic QFN)	Temperature	Stability	Frequency	Packing Option	
P=A: 7.0x5.0mm P=B: 5.0x3.2mm P=C: 3.2x2.5mm P=D: 2.5x2.0mm	T=C: $0^{\circ} \sim +70^{\circ} \text{ C}$ T=E: $-20^{\circ} \sim +70^{\circ} \text{ C}$ T=I: $-40^{\circ} \sim +85^{\circ} \text{ C}$	S=1: ±50ppm S=2: ±25ppm	XXX.XXXX (4 decimal places)	Blank: Tubes T: Tape & Reel	

Example: DSC8002CE1-123.0000T

The example part number above is a 123.0000MHz oscillator in Plastic 3.2x2.5mm package, with ± 50 ppm stability over an operating temperature of -20 to $\pm 70^{\circ}$ C, shipped in Tape and Reel. The reel size (7" or 13" diameter) will be determined by the factory based on quantity.

Unprogrammed blank parts can be ordered by omitting the Frequency field. (eg. DSC8002CE1) Unprogrammed parts are shipped in tubes only.

DISCERA, Inc. • 1961 Concourse Drive, San Jose, California 95131 • USA
Phone: +1 (408) 432-8600 • Fax: +1 (408) 432-8609 • Email: sales@discera.com • www.discera.com

All Rights Reserved. No part of this document may be copied or reproduced in any form without the prior written permission of Discera, Inc. Discera Inc. may update or make changes to the contents, products, programs or services described at any time without notice. This document neither states nor implies any kind of warranty, including, but not limited to implied warranties of merchantability or fitness for a particular use.

Page 8 | 2010-3-18 MK-Q-B-P-D-031809-06-6