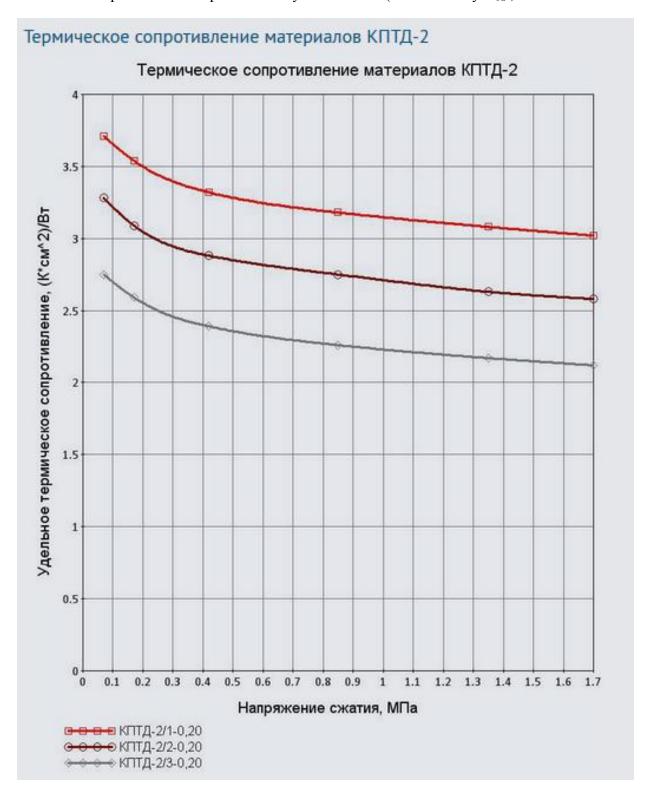
Керамико-полимерные теплопроводящие диэлектрические (КПТД) материалы НОМАКОН™ КПТД-2 являются 100%-ми тонкопленочными силиконовыми эластомерами, применяемыми для изготовления теплопроводящих эластичных прокладок и теплопроводящих пленочных электрических изоляторов в изделиях тепло-, электро- и радиоэлектронной техники, работающих в интервале температур от минус 60°С до плюс 250°С.

Материалы марки КПТД-2/2 изготавливаются на основе микропорошков оксидной и нитридной керамики, спеченных по уникальной технологии в среде высокоочищенного азота при температуре выше 1200 (β-Кристален™).


	Норма по Т	Методы контроля		
Наименование	1			
	КПТД-2/1	КПТД-2/2	КПТД-2/3	
Внешний вид	Эластичный резиноподобный однородный листовой материал			Визуально
Цвет	Розовый, серый(1)	Коричневый, серый(¹)	Серый	Визуально
Плотность, г/см ³	2,05-2,20	1,90-2,10	1,80-2,00	ГОСТ 15139
Твердость по Шору А, единиц	70-90			ΓΟCT 263
Толщина, мм	от 0,15 до 2,0			FOCT 11358
Липкость(2), Н/м, не менее	100			ГОСТ 28019
Номинальное рабочее напряжение сжатия, МПа, не менее	3,5			ГОСТ 26605 п.5.12 ТУ
Предельное напряжение сжатия, МПа, не менее	20			
Предельная степень сжатия (эластичность), %, не менее	50			
Электрическая прочность, кВ/мм, не менее при постоянном напряжении при переменном напряжение	25 18	20 15	15 10	ГОСТ 6433.3
Удельное объемное электрическое сопротивление, Ом∙см, не менее	1014	10 ¹³	10 ¹²	ГОСТ 6433.2
Диэлектрическая проницаемость, при 1000 Гц, не более	6,5			ГОСТ 22372
Тангенс угла диэлектрических потерь, при 1000 Гц, не более	0,0045			ГОСТ 22372
Теплопроводность, Вт/(м∙К), не менее	0,80	1,10	1,40	ASTM D 5470 FOCT 12.4.14
Удельное термическое сопротивление, (К•см²)/Вт, при толщине листа 0,20±0,02 мм и давлении сжатия 0,69 МПа (100 psi), (в формате ТО3, ТО220), не более, - исходный листовой материал - материал с клеящим слоем или с позиционирующей смазкой	3,10 2,80	2,70 2,50	2,30 2,00	ASTM E 1530 ΓΟCT 12.4.145

ТЕПЛОПРОВОДЯЩИЕ СВОЙСТВА ПРОКЛАДОК ИЗ МАТЕРИАЛОВ КПТД-2

Для оценки теплопроводящих свойств листовых материалов применяется математическая модель расчета термического сопротивления. В данном случае суммарное удельное термическое сопротивление теплопередаче R включает термическое сопротивление на границе «теплоотдающая контактная поверхность — поверхность прокладки» R_{1S} , термическое сопротивление, зависящее от толщины δ и теплопроводности λ материала прокладки δ/λ , а также термическое сопротивление на границе «поверхность прокладки — теплопринимающая контактная поверхность» R_{2S} .

Следует отметить, что за счет конформной поверхности и эластичности термическое сопротивление материалов КПТД-2 стабилизируется уже при напряжении сжатия 0,5-0,7 МПа (см. график зависимости удельного термического сопротивления от напряжения сжатия). При напряжении сжатия до 3,5 МПа изменение толщины материала КПТД-2 за

счет сжатия с достаточной точностью возможно рассчитать по формуле. При применении одностороннего липкого слоя или позиционирующей смазки суммарное удельное контактное термическое сопротивление уменьшается (см. величину R_{0S}).

Ниже в таблице представлены расчетные значения термических сопротивлений типовых прокладок для различных марок и толщин материалов КПТД-2, полученные при следующих значениях эмпирических коэффициентов:

- материал листовой КПТД-2/1 $R_s = 0.90 \, (\text{K} \cdot \text{cm}^2)/\text{BT}$, $R_{0s} = 0.58 \, (\text{K} \cdot \text{cm}^2)/\text{BT}$, $\lambda = 0.87 \, \text{BT}/(\text{m} \cdot \text{K})$;

- материал листовой КПТД-2/2 $R_S = 1,03$ (K· cm²)/Bt , $R_{0S} = 0,79$ (K· cm²)/Bt , $\lambda = 1,14$ Bt/(м·K);
- материал листовой КПТД-2/3 $R_S = 0.97 \text{ (K} \cdot \text{cm}^2)/\text{BT}$, $R_{OS} = 0.67 \text{ (K} \cdot \text{cm}^2)/\text{BT}$, $\lambda = 1.44 \text{ BT/(m} \cdot \text{K)}$;

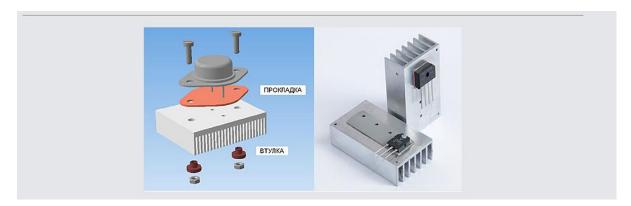
Представленная выше математическая модель расчета термического сопротивления листовых материалов КПТД-2 при напряжениях сжатия в пределах 0,5-1,7 МПа дает хорошую сходимость результатов при соблюдении требований к сжимающим контактным поверхностям.

Пример 2. Силовой элемент (диод) с целью отвода выделяемого тепла устанавливается на алюминиевый радиатор через теплопроводящую электроизолирующую прокладку 2A4229 (TO-3), выполненную из материала HOMAKOH™ КПТД-2/1-0,20. Требуется определить термическое сопротивление прокладки R_F для оценки достаточности теплоотвода, а также рассчитать перепад температур Δ T между корпусом диода и радиатором при значении отводимой тепловой мощности Q = 25 Вт.

- 1. По маркировке материала принимаем исходную толщину прокладки δ_0 = 0,20 мм ;
- 2. Определяем площадь контактной поверхности прокладки $F = 7,99 \text{ cm}^2$;
- 3. Принимаем значения $R_S = 0.90$ (K· cm²)/Вт , $\lambda = 0.87$ Вт/(м·К); для материала КПТД-2/1;
- 4. Принимаем напряжение сжатия прокладки σ = 0,7 МПа, модуль упругости E =157,8 МПа/мм и рассчитываем ее остаточную толщину при сжатии по формуле 5: δ = 0,196 мм ;
- 5. Рассчитываем удельное термическое сопротивление $R = R_S + \delta / \lambda$, R = 3,15 (K· cm²)/Bт<;
- 6. Определяем термическое сопротивление прокладки R_F по формуле 4: R_F = 0,394 K / BT;
- 7. Рассчитываем перепад температур, используя формулу $1:\Delta T = R_F \cdot Q \quad \Delta T = 9,85$ °C.

Для примера 2 при применении материала КПТД-2/3-0,20-ЛК имеем:

 $R_{OS} = 0.67 \; (\text{K} \cdot \text{cm}^2)/\text{BT} \; , \; E = 157.8 \; \text{M} \Pi \text{a}/\text{m} \text{m} \; , \; \lambda = 1.44 \; \text{BT}/(\text{m} \cdot \text{K}) \; , \; R = 2.03 \; (\text{K} \cdot \text{cm}^2)/\text{BT} \; , \; R_F = 0.254 \; \text{K} \; / \; \text{BT} \; , \; \Delta T = 6.35 \; ^{\circ}\text{C}.$


Для примера 2 при применении материала КПТД-2М/3-0,20 имеем:

 $R_{OS} = 0.19 \; (\text{K} \cdot \text{cm}^2)/\text{BT} \; , \; E = 98.1 \; \text{M} \; \text{\Pi} \; \text{a/mm} \; , \; \lambda = 1.44 \; \text{BT/(m} \cdot \text{K)} \; , \; R = 1.53 \; (\text{K} \cdot \text{cm}^2)/\text{BT} \; , \; R_F = 0.191 \; \text{K} \; / \; \text{BT} \; , \; \Delta T = 4.79 \; ^{\circ}\text{C}.$

	Теплопров	одящие свойства типов	ых прокладок из н	чатериалов НОМАКОН™	КПТД-2	
1	Вид	Поверхность теплопередачи, см²	Толщина	Термическое сопротивление R_F , К/Вт, при напряжении сжатия 0,69		
Обозначение				МПа (100 psi), стандартная / с липким слоем		
			прокладки, мм	VIII 24	Марка материала	WOTE 2.5
2A4229 (TO-3)	80 30 M2	7,99	0,20 0,30 0,50 1,00 1,50 2,00	КПТД-2/1 0,39/0,35 0,53/0,50 0,83/0,79 1,54/1,50 2,26/2,22 2,98/2,94	КПТД-2/2 0,34/0,31 0,45/0,42 0,67/0,64 1,22/1,19 1,77/1,74 2,32/2,23	0,29/0,25 0,38/0,34 0,55/0,51 0,99/0,95 1,42/1,38 1,86/1,82
2А3521 (ТО-66)	35 24,4 57	5,00	0,20 0,30 0,50 1,00 1,50 2,00	0,63/0,57 0,86/0,79 1,32/1,25 2,47/2,40 3,62/3,55 4,77/4,70	0,55/0,50 0,72/0,68 1,08/1,03 1,95/1,90 2,83/2,78 3,71/3,66	0,47/0,41 0,60/0,54 0,88/0,82 1,58/1,52 2,27/2,21 2,97/2,91
2A2520 (TO-3P)	20	4,90	0,20 0,30 0,50 1,00 1,50	0,64/0,58 0,88/0,81 1,35/1,28 2,52/2,45 3,69/3,63	0,56/0,51 0,74/0,69 1,10/1,05 1,99/1,94 2,89/2,84	0,47/0,41 0,62/0,56 0,90/0,84 1,61/1,55 2,37/2,26
2A2318 (TO-218, TO-247)	28 29 18	4,04	0,20 0,30 0,50 1,00 1,50	0,78/0,70 1,06/0,98 1,63/1,55 3,05/2,98 4,48/4,40	0,68/0,62 0,90/0,84 1,33/1,27 2,42/2,36 3,50/3,44	0,58/0,50 0,75/0,67 1,09/1,02 1,95/1,88 2,81/2,73
2A1813 (TO-220)	25 ESI 25 ESI 26	2,26	0,20 0,30 0,50 1,00	1,39/1,25 1,90/1,76 2,92/2,78 5,46/5,32	1,21/1,11 1,60/1,50 2,38/2,27 4,32/4,21	1,03/0,90 1,34/1,20 1,95/1,82 3,49/3,35
2A1310 (TO-126)	20 8	1,22	0,20 0,30 0,50 1,00	2,58/2,31 3,52/3,26 5,40/5,14 10,11/9,85	2,25/2,05 2,97/2,77 4,40/4,21 8,00/7,80	1,91/1,66 2,48/2,23 3,61/3,37 6,46/6,21
2D25,4x6,5 (DO-5)	925,4	4,74	0,20 0,30 0,50 1,00	0,66/0,60 0,91/0,84 1,39/1,32 2,60/2,54	0,58/0,53 0,76/0,71 1,13/1,08 2,06/2,01	0,49/0,43 0,64/0,57 0,93/0,87 1,66/1,60
2D16x5 (DO-4)	ø16 ø5	1,81	0,20 0,30 0,50 1,00	1,74/1,56 2,37/2,19 3,64/3,47 6,82/6,64	1,52/1,38 2,00/1,87 2,97/2,84 5,39/5,26	1,28/1,12 1,67/1,50 2,44/2,27 4,35/4,19

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

- 1. Листовые материалы КПТД-2 (КПТД-2М) и изделия из них (прокладки и подложки) используются в состоянии поставки. Перед применением снимите защитную полимерную пленку с поверхности материала.
 - 2. Определите требуемое усилие сжатия контактных поверхностей, между которыми устанавливается прокладка. При этом следует учитывать, что номинальное рабочее напряжение сжатия (МПа) определяет допустимую относительную деформацию листа материала в пределах от 10% до 50 % от его исходной толщины, при которой изготовителем гарантируются прочностные, электроизоляционные и теплопроводящие свойства, представленные в таблице «Технические характеристики».
 - 3. Предельное напряжение сжатия определяет относительную деформацию материала в пределах до 50% от его исходной толщины при которой не происходит потеря эластичности, и в последующем, при снятии напряжения сжатия материал восстанавливается до исходной толщины и сохраняет свои свойства. Не допускается эксплуатация прокладок из материалов КПТД-2 (КПТД-2М) при превышении предельного напряжения сжатия.
 - 4. Качество сжимающих поверхностей (прибора и радиатора для достижения нормируемых теплопередающих свойств прокладки должно соответствовать ГОСТ 265. Шероховатость сжимающих поверхностей не должна превышать Ra=0,63 мкм по ГОСТ 2789. Отклонение геометрии сжимающих поверхностей по плоскостности и параллельности должно быть не выше степени точности 7 по ГОСТ 24643. Наличие заусениц и других дефектов на контактных поверхностях может нарушить целостность прокладки, и, соответственно, требуемую электрическую изоляцию.

5. Эффективность отвода тепла через прокладку из материала КПТД-2 определяется усилием сжатия поверхностей прибора и радиатора, их плоскостностью и параллельностью при сборке, а также наличием остаточных воздушных полостей между прокладкой и прижимными поверхностями. С целью максимального выдавливания воздушных полостей рекомендуется приложить прокладку глянцевой поверхностью или поверхностью с липким слоем к наиболее качественной прижимной поверхности и прикатать резиновым валиком.

- 6. Для изоляции полупроводниковых приборов от корпуса радиатора при креплении винтами используйте втулки изолирующие HOMAKOH™ M2,5 и M3 из термостойкого полиамида.
- 7. В случае применения прокладок большого формата с площадью поверхности от 20 до 1200 см² часто возникает проблема качественной подготовки контактных поверхностей. При этом толщины и эластичности прокладки бывает не достаточно, чтобы при сжатии компенсировать дефекты самих поверхностей, а также их плоскостность и параллельность при сборке. Чтобы не увеличивать толщину прокладки, приводящую к увеличению термического сопротивления, рекомендуется предварительно нанести на контактные поверхности соответствующую теплопроводную пасту и затем установить и прикатать прокладку.
- 8. Запрещается хранение, манипулирование и эксплуатация материалов КПТД-2 (КПТД-2М) при температурах ниже минус 60°С и выше плюс 250°С.