	APPROVAL SHEET
Customer:	
Part Number:	
Part No.:	11436080000.0005
Holder:	OCXO-36
Frequency:	80MHz
Manufacturer:	
Date:	2023-03-22

Prepared	Checked	Approved

(For Customer Use)

Acceptable	Non-Acceptable

Revision History

No.	Revised Date	Change Content	Approved	Remark
1.0	2023-03-22	Initial Release		

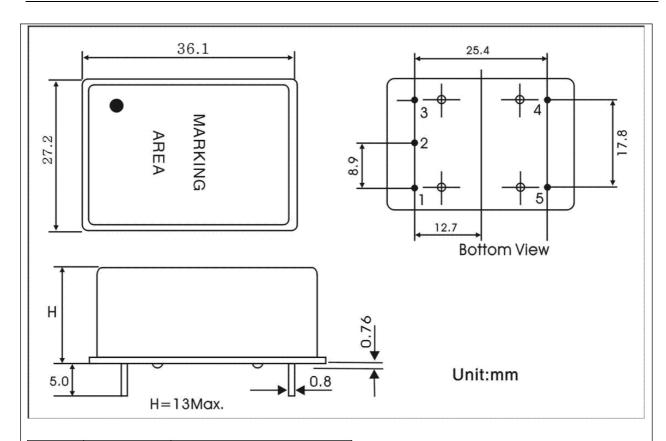
1. Scope

This document describes technical guidelines of product 11436080000.0005

2. Electrical Characteristics

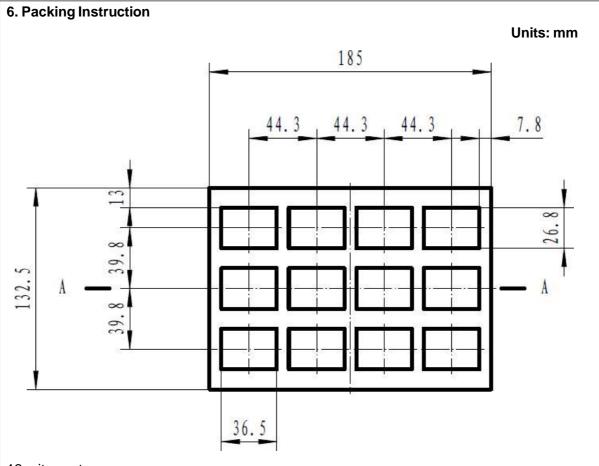
	НС	CMOS OUTPUT OCXO)-36			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYPE	MAX	UNIT
Normal Frequency	F_n		_	80	_	MHz
Absolute maximum r	atings					
Maximum Supply Range	V_{cc}	-	-0.5	_	+5.5	V
Operating Temperature range	TA	-	-40		75	$^{\circ}$
Storage Temperature			-55		100	$^{\circ}$
Power						
Operating Supply Voltage	V_{cc}		2. 97	3. 3	3. 63	V
Turn-On Power	-	Nom Vcc	_	_	4.0	W
Steady state Power	-	Nom Vcc Ta=25℃	_	-	1.4	W
Frequency Stabilit	;y			!		
Calibration		T _A =25 ℃			±100	ppb
Freq VS Temperature	TS	-40°C to 75°C (ref to 25°C)			±100	ppb
Freq VS Time (Aging)	_	Per day			± 2	ppb
		Per years			± 200	ppb
Warm up time		Time to within 0.1ppm			5	minute s
Output parameters						
Output signal		_		HCMOS		_
Output load	CL	Output to ground	13.5	15pF	16. 5	pF
Amplitude	VOH	Load=15pF	2. 97	-	_	V
	VOL	Load=15pF	_	_	0.33	V
Output Duty Cycle	DC	@ 50% of output level	45	-	55	%
Rise & fall Time	-	10%c to 90% Vout	_	_	10	nS

Phase noise		Offset = 1Hz	-90	
		10Hz	-110	
	-	100Hz	-135	dBc/Hz
	_	1KHz	-145	
	_	10KHz	-150	

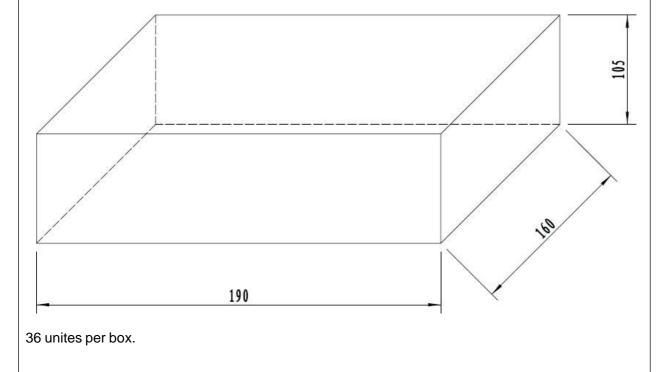

 \square dry air

3.0	3. Construction				
1.	Oscillator enclosure	e seal:			
	☐Seam seal	■resistance weld	\square cold weld		
2.	crystal enclosure m	edium			

■vacuum


4.Dimension:

□nitrogen


PIN	SYMBOL	FUNCTION
PIN1	Vc	Voltage control
PIN2	Vref/NC	Reference voltage
PIN3	VCC	Supply voltage
PIN4	Output	RF output
PIN5	GND	Ground

5. Marking	
■ Laser Marking	☐ Ink Marking

12units per tray

Tray Material: ESD sponge.

ΔF≤±0.2ppm

ΔF≤±0.2ppm

Per. Spec.

7. Reliability characteristic: Item Condition **Specifications** 7.1 Reflow ΔF≤±0.2ppm 3X 240°C Peak Simulation 20 secs max above 240°C 7.2 **Power Cycle** 100 Cycles ∆F≤±0.2ppm -40°C, 30 minutes no power (off) and 30 minutes powered (on) -- Test product for functionality -- Continue for another 250 cycles -- Test product for functionality -- Intenal visual and mechanical inspection 7.3 Thermal Shock Subject samples to temperature extremes of -40 and ΔF≤±0.2ppm +125C, 30 minute soaks at the temperature extremes, 10 seconds maximum transition time between extremes. The test duration is 10 Cycles GJB 360A-96 Method 107. 7.4 Mechanical Subject OCXO to 500 g's, half-sine, pulse width of 1 ms ΔF≤±0.2ppm Shock for double ovens; 1000 g's, half-sine, pulse width of 1 ms for single ovens, five shocks in each of 6 directions of 3 perpendicular planes, for a total of 30 shocks. After

Vibrate oscillators sinusoidally from 10 Hz to 55 Hz with

a double amplitude of 0.60" and from 55 Hz to 500 Hz with a peak acceleration of 10 g's for 30 minutes in each

of three perpendicular directions. Oscillators to be

GB2423.10-1995 (idt IEC 68-2-6:1982) Method Fc.

Drop from 10cm height on 3cm hard wooden board for 6

GB2423.8-1995 (idt IEC 68-2-32:1990) Method Ed.

oscillators to 25C for 1008 hours. Readings are to be

taken with oscillator at 25C twice per day. Determine

aging (frequency shift post 1008 hours minus initial

Bias oscillators at nominal voltage and subject

checked with final test after vibration.

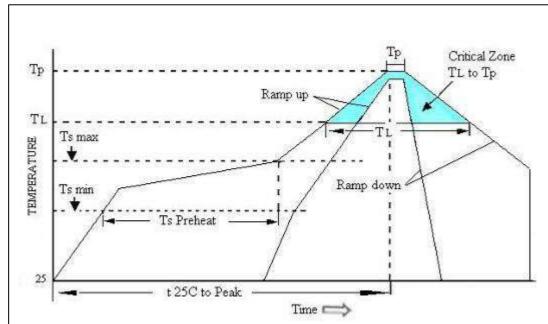
shock, check with final test. GJB 360A-96 Method 213

7.5

7.6

7.7

Vibration


Free drop

Aging

times

		frequency). Use the results to predict long-term aging.	
7.8	Solderability	Precondition parts by steaming (over boiling water) for 8 hours OR age the parts at 150C for 16 hours	A new uniform coating of solder shall cover a minimum of 95% of the surface being immersed.
			immersea.
All	products are F	RoHs compliant	

9. Reflow Profile

High Temperature Infrared /Convection

Note:Temperature shown are applied to body of device

Ts max to T _L (Ramp-up Rate)	3°C/second max
Preheat	
Temperature Min(Ts Min)	150℃
Temperature Typical(Ts Typ)	175℃
Temperature Max.(Ts Max)	200℃
Time(ts)	60-180 seconds
Ram-up Rate(T _L to Tp)	3°C/second Max
Time Maintained Above:	
Temperature(T _L)	217℃
Time(T _L)	60-150seconds
Peak Temperature (Tp)	260°C Max for 10 seconds
Time within 5°C of actual peak(t _p)	20-40 seconds
Ramp-down Rate	6°C/seconds Max
Tune 25°C to Peak Temperature(t)	8 minutes Max
Moisture Sensitivity Level	Level 1

High Temperature Manual Soldering

Note:Temperature shown are applied to body of device