

Octal Transparent Latch, 3-State

CD54/74AC/ACT373 - Non-Inverting CD54/74AC/ACT533 - Inverting

Type Features:

- Buffered inputs
- Typical propagation delay: 4.3 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF

FUNCTIONAL DIAGRAM

The RCA-CD54/74AC373 and CD54/74AC533 and the CD54/74ACT373 and CD54/74ACT533 octal transparent 3-state latches use the RCA ADVANCED CMOS technology. The outputs are transparent to the inputs when the Latch Enable (LE) is HIGH. When the Latch Enable (LE) goes LOW, the data is latched. The Output Enable (OE) controls the 3-state outputs. When the Output Enable (OE) is HIGH, the outputs are in the high-impedance state. The latch operation is independent of the state of the Output Enable.

The CD74AC/ACT373 and CD74AC/ACT533 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT373 and CD54AC/ACT533, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

Family Features:

- Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015
- SCR-Latchup-resistant CMOS process and circuit design
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply
- ± 24-mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50-ohm transmission lines

TRUTH TABLE

Output Enable	Latch Enable	Data	AC/ACT373 Output	AC/ACT533 Output
L	н	н	н	L
Ł	н	L	L	н
L	L	1	[L	Ħ
L	L	h	j н	L
н,	×	×	Z	Z

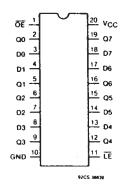
Note:

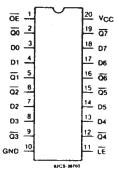
- L = Low voltage level
- H = High voltage level
- t = Low voltage level one set-up time prior to the high to low latch enable transition
- h = High voltage level one set-up time prior to the high to low latch enable transition.
- X = Don't Care
- Z = High Impedance State

This data sheet is applicable to the CD54/74AC373, CD54/74ACT373, and CD54ACT533. The CD74AC533 and CD74ACT533 were not acquired from Harris Semiconductor.

^{*}FAST is a Registered Trademark of Fairchild Semiconductor Corp.

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE (V∞)	-0.5 to 6 V
DC INPUT DIODE CURRENT, I_{ik} (for $V_i < -0.5 \text{ V or } V_i > V_{cc} + 0.5 \text{ V}$)	+20 mA
\sim 50 OUTPUT DIODE CURRENT, low (for $V_0 < -0.5 \text{ V}$ or $V_0 > V_{cc} + 0.5 \text{ V}$)	+50 mA
DC 001P01 SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5$ V or	$V_0 < V_{cc} + 0.5 \text{ V}$
DC VCC OF GROUND CURRENT (ICC OF IGND)	+100 mA*
POWER DISSIPATION PER PACKAGE (Pp):	
For T _A = -55 to +100°C (PACKAGE TYPE E)	500 mW
For $I_A = +100$ to $+125$ °C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For $I_A = -55$ to $+70$ °C (PACKAGE TYPE M)	
For $I_A = +70$ to $+125$ °C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE (Tato)	
LEAU TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum	+265°C
Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contain	cting lead tips only +300°C
*For up to 4 outputs per device; add ± 25 mA for each additional output.	
• • •	


RECOMMENDED OPERATING CONDITIONS:


For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LI		
	MIN.	MAX.	UNITS
Supply-Voltage Range, V∞*:		1	
(For T _A = Full Package-Temperature Range)	•		1
AC Types	1.5	5.5	·
ACT Types	4.5	5.5	V
DC Input or Output Voltage, V _I , V _O	0	V _{cc}	V
Operating Temperature, T _A	-55	+125	°C
Input Rise and Fall Slew Rate, dt/dv	-		
at 1.5 V to 3 V(AC Types)	0	50	ns/V
at 3.6 V to 5.5 V(AC Types)	Ō	20	ns/V
at 4.5 V to 5.5 V(ACT Types)	. 0	10	ns/V

^{*}Unless otherwise specified, all voltages are referenced to ground.

TERMINAL ASSIGNMENT DIAGRAMS

CD54/74AC373, CD54/74ACT373

CD54/74AC533, CD54/74ACT533

Technical Data __

CD54/74AC373, CD54/74AC533 CD54/74ACT373, CD54/74ACT533

STATIC ELECTRICAL CHARACTERISTICS: AC Series

						AMBIENT	TEMPE	RATURE	(T _A) - °(
CHARACTERIST	ICS	TEST CO	NDITIONS	V _{cc}	+:	25	-40 t	o +85	-55 to	+125	UNITS
		V ₁ (V)	l _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input				1.5	1.2	_	1.2		1.2		
Voltage	VIH			3	2.1		2.1		2.1		V
		,		5.5	3.85	_	3.85	_	3.85		
Low-Level Input				1.5	_	0.3	_	0.3		0.3	
Voltage	VIL			3	_	0.9	_	0.9	<u> </u>	0.9	V
				5.5	-	1.65	_	1.65	-	1.65	
High-Level Output			-0.05	1.5	1.4	-	1.4	_	1.4		
Voltage	V _{он}	VIH	-0.05	3	2.9		2.9	_	2.9]
		or	-0.05	4.5	4.4	_	4.4	<u> </u>	4.4	_]
		V _{IL}	-4	3	2.58	_	2.48	_	2.4	_] v
			-24	4.5	3.94	_	3.8		3.7]
		(-75	5.5		_	3.85	_	T -	_	
		#, *	-50	5.5	<u> </u>		_	_	3.85	_]
Low-Level Output			0.05	1.5	_	0.1		0.1	_	0.1	
Voltage	V_{OL}	ViH	0.05	3		0.1		0.1		0.1]
		or	0.05	4.5	-	0.1		0.1		0.1]
		V _{IL}	12	3		0.36	_	0.44		0.5	V
			24	4.5	_	0.36	_	0.44		0.5	
		(75	5.5	_	_	_	1.65	_	-]
		#, * {	50	5.5	_	_	_	_	_	1.65	1
Input Leakage Current	l _t	V _{cc} or GND		5.5	_	±0.1	_	±1	_	±1	μА
3-State Leakage Current	loz	Viei									
	-	or V _{IL}									
		V _o =		5.5	_	±0.5	_	±5	_	±10	μΑ
		or									
		GND		ļ				 	_		-
Quiescent Supply Current, MSI	Icc	V _∞ or GND	0	5.5	_	8	_	80	_	160	μΑ

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation

power dissipation.
*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

STATIC ELECTRICAL CHARACTERISTICS: ACT Series

						AMBIEN	T TEMP	ERATURI	E (T _A) - °	С	
CHARACTERIST	ics	TEST CO	NDITIONS	V _{cc}	+	25	-40	to +85	-55 t	o +125	UNITS
		V, (V)	I _o (mA)	(V)	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
High-Level Input Voltage	ViH			4.5 to 5.5	2	-	2	_	2	_	v
Low-Level Input Voltage	V _{IL}			4.5 to 5.5	_	0.8	_	0.8	_	0.8	V
High-Level Output		V _{IH}	-0.05	4.5	4.4		4.4	_	4.4	<u> </u>	
Voltage	V _{OH}	or V _{IL}	-24	4.5	3.94	-	3.8	_	3.7	† –] ,
		#, * {	-75	5.5	_	_	3.85	_	_		1 '
			-50	5.5	<u> </u>		—	_	3.85	_	1
Low-Level Output		V _{IH}	0.05	4.5	T -	0.1	-	0.1	_	0.1	
Voltage Vo	Vol	or V _{IL}	24	4.5	_	0.36	_	0.44	_	0.5] _v
	:	#, * {	75	5.5	_	_	_	1.65			1 *
		l	50	5.5	-	_	_		_	1.65	1
Input Leakage Current	l ₁	V _{cc} or GND		5.5	_	±0.1	_	±1	_	±1	μΑ
3-State Leakage Current	loz	V _{IH}									
	702	or V _{IL}									.
		V _o =		5.5	_	±0.5	_	±5	_	±10	μΑ
	ļ	Vcc									!
		or GND			·						
Quiescent Supply Current, MSI	Icc	V _∞ or GND	0	5.5	_	8		80		160	μΑ
Additional Quiescent S Current per Input Pi TTL Inputs High 1 Unit Load	Supply n Δl_{cc}	V _{cc} -2.1		4.5 to 5.5	_	2.4		2.8	_	3	mA

[#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

*Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

ACT INPUT LOADING TABLE

INPUT	UNIT LOAD*						
INFUI	ACT373	ACT533					
ŌE	0.87	0.87					
Dn	0.5	0.5					
ĹĒ	0.8	0.8					

*Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C.

PREREQUISITE FOR SWITCHING: AC Series

			AMBI	「∧) -° C	UNITS		
CHARACTERISTICS	SYMBOL	V _{cc} (V)	-40 to +85			-55 to +125	
			MIN.	MAX.	MIN.	MAX.	
LE Pulse Width	tw	1.5 3.3* 5†	44 4.9 3.5		50 5.6 4		ns
Setup Time Data to LE	tsu	1.5 3.3 5	2 2 2		2 2 2		ns
Hold Time Data to LE	tH	1.5 3.3 5	33 3.7 2.6	=	38 4.2 3	_ 	ns

*3.3 V: min. is @ 3 V †5 V: min. is @ 4.5 V

SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF

			AMBI	ENT TEMPE	RATURE (T	'A) - °C	
CHARACTERISTICS	SYMBOL	V _{cc}	-40 t	o +85	-55 to	+125	UNITS
		(V)	MIN.	MAX.	MIN.	MAX.	
Propagation Delays: Data to Qn 373	t _{PLH} t _{PHL}	1.5 3.3* 5†	3.1 2.2	96 10.8 7.7	— 3 2.1	106 11.9 8.5	ns
533	tpLH tpHL	1.5 3.3 5	3.8 2.7	119 13.4 9.5	3.7 2.6	131 14.7 10.5	ns
LE on Qn 373	t _{PLH} t _{PHL}	1.5 3.3 5	4.3 3.1	136 15.2 10.9	4.2 3	150 16.8 12	ns
533	telн teнl	1.5 3.3 5	 4.3 3.1	136 15.3 10.9	4.2 3	150 16.8 12	ns
Output Enable Times	tezu tezh	1.5 3.3 5	4.1 2.7	119 14.4 9.5	4 2.6	131 15.8 10.5	ns
Output Disable Times	tplz tpHz	1.5 3.3 5	3.7 3	131 13.1 10.5	3.6 2.9	144 14.4 11.5	ns
Power Dissipation Capacitance	C _{PD} §		63	Тур.	63	Тур.	pF
Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV} See Fig. 1	5	4 Typ. @ 25°C			V	
Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C		v		
Input Capacitance	Cı			10	_	10	pF
3-State Output Capacitance	Co			15		15	pF

*3.3 V; min. is @ 3.6 V max. is @ 3 V

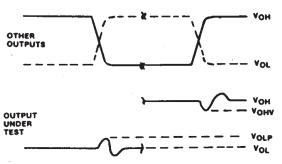
†5 V: min. is @ 5.5 V max. is @ 4.5 V §CPD is used to determine the dynamic power consumption, per latch. $P_D = V_{CC}^2$ f_i $(C_{PD} + C_L)$ where f_i = input frequency C_L = output load capacitance

 V_{cc} = supply voltage.

PREREQUISITE FOR SWITCHING: ACT Series

		V _{cc} (V)	AMBI	1.			
CHARACTERISTICS	SYMBOL		-40 to +85		-55 to +125		UNITS
			MIN.	MAX.	MIN.	MAX.	
TE Pulse Width	tw	5†	3.6	· -	4	_	ns
Setup Time Data to LE	tsu	5	2	_	2	_	ns
Hold Time Data to LE	t _H	5	2.7	_	3		ns

†5 V: min. is @ 4.5 V


SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF

		V _{cc} (V)	AMBI	T _A) -°C	UNITS		
CHARACTERISTICS	SYMBOL		-40 to +85			-55 to +125	
		(*)	MIN.	MAX.	MIN.	MAX.	1
Propagation Delays: Data to Qn 373	t _{PLH}	F.1	2.7	9.5	2.6	10.4	
533	t _{PHL}	5†	3	10.4	2.9	11.4	ns
LE to Qn 373 533	t _{PLH}	5	3.1	11.4	3	12.5	ns
Output Enable Times	t _{PZL} t _{PZH}	5	3.5	12.3	3.4	13.5	ns
Output Disable Times	t _{PLZ} t _{PHZ}	5	3.2	11.4	3.1	12.5	ns
Power Dissipation Capacitance	C _{PD} §		63 1	Гур.	63 Typ.		pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	V _{OHV} See Fig. 1	5	4 Typ. @ 25°C			V	
Max. (Peak) Vol During Switching of Other Outputs (Output Under Test Not Switching)	V _{OLP} See Fig. 1	5	1 Typ. @ 25°C			٧	
Input Capacitance	C ₁	_	_	10	_	10	pF
3-State Output Capacitance	Co	_	_	15	_	15	pF

†5 V: min. is @ 5.5 V max. is @ 4.5 V

 V_{cc} = supply voltage.

PARAMETER MEASUREMENT INFORMATION

NOTES:

- 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.
- 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS:
- PRR ≤ 1 MHz, t = 3 no, t = 3 no, SKEW 1 no.

 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 JF CAPACITOR, SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH.

9205-42406

Fig. 1 - Simultaneous switching transient waveforms.

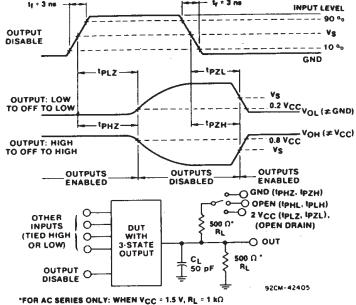


Fig. 2 - Three-state propagation delay waveforms and test circuit.

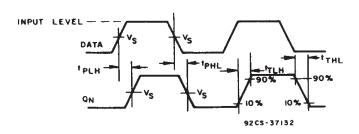


Fig. 3 - Data to Qn output propagation delays and output transistion times.

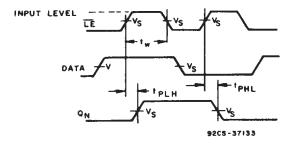
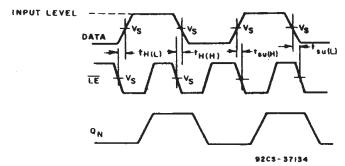



Fig. 4 - Latch enable propagation delays.

	CD54/74AC	CD54/74ACT	
Input Level	Vcc	3 V	
Input Switching Voltage, Vs	0.5 V _{cc}	1.5 V	
Output Switching Voltage, Vs	0.5 V _{cc}	0.5 V _{cc}	

Fig. 5 - Latch enable prerequisite times.

.com 28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)
CD54AC373F3A	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CD54ACT373F3A	ACTIVE	CDIP	J	20	1	None	Call TI	Level-NC-NC-NC
CD54ACT533F3A	OBSOLETE	CDIP	J	20		None	Call TI	Call TI
CD74AC373E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74AC373M	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD74AC373M96	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD74ACT373E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD74ACT373M	ACTIVE	SOIC	DW	20	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD74ACT373M96	ACTIVE	SOIC	DW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.