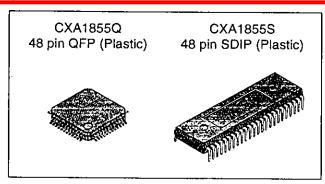
CXA1855Q/S

I²C Bus-Compatible Audio/Video Switch

For the availability of this product, please contact the sales office.

Description

The CXA1845Q/S is a 5-input, 3-output audio/video switch featuring I²C bus compatibility for TVs.


Features

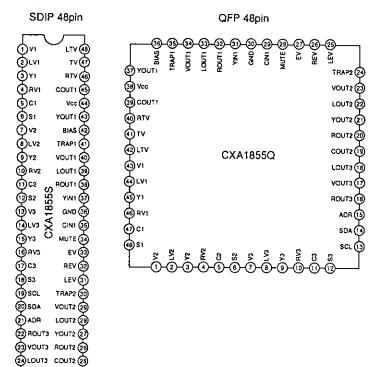
- Serial control with I²C bus
- · 5 inputs, 3 outputs
- · 3 outputs can each be independently selected
- · Separate control of video and audio switches
- · 6dB gain amplifiers for video system
- Wideband video amplifier (20MHz, –3dB)
- · Y/C mixer circuit
- · Slave address can be changed (90H/92H)
- Audio muting from external pin
- High impedance maintained by I²C bus line (SDA, SCL) even when power is OFF
- · Wide audio dynamic range (3Vrms typ.)

Applications

Audio/video switch featuring 1^2C bus compatibility for TVs

Pin Configuration (Top View)

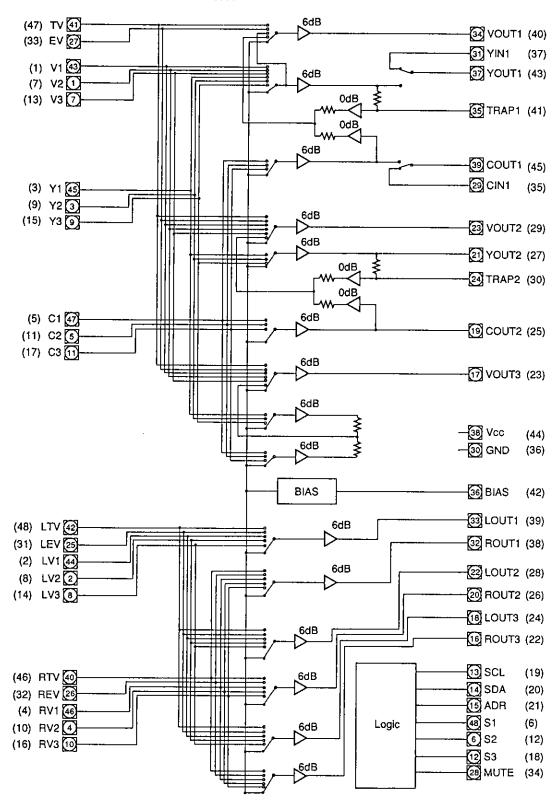
Absolute Maximum Ratings


 Supply voltage 	Vcc	12	V				
 Operating temperature 	Topr	-20 to +75	℃				
 Storage temperature 	Tstg	-65 to +150	Ç				
Allowable power dissipation							
	PD	750 (QFP)	mW				
		1800 (SDIP)	mW				

Operating Conditions

Supply voltage Vcc 9±0.5 V

Structure


Bipolar silicon monolithic IC

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

* Parenthesized numbers indicate Pin No. of CXA1855S.

Note) A total gain of 0dB is achieved by connecting a $6k\Omega$ resistor to the each audio input.

Pin Description

Parenthesized numbers indicate Pin No. of CXA1855S

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
41 (47) 27 (33) 43 (1) 1 (7) 7 (13)	TV EV V1 V2 V3	4.5V	Vcc 41) 20k (27) 150 W 150 W 17) ₹	Video signal inputs. Input composite video signals.
45 (3) 3 (9) 9 (15) 47 (5) 5 (11) 11 (17)	Y1 Y2 Y3 C1 C2 C3	4.5V	Vcc 45 20k 3 150 W 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Y/C separation signal inputs Y1 to Y3 pins: Luminance signals input C1 to C3 pins: Chrominance signals input
42 (48) 25 (31) 44 (2) 2 (8) 8 (14) 40 (46) 26 (32) 46 (4) 4 (10) 10 (16)	LTV LEV LV1 LV2 LV3 RTV REV RV1 RV2 RV3	4.6V	42 25 44) 27k 33k 40 40 40 1046 1046	Audio signal inputs.
34 (40) 23 (29) 17 (23)	VOUT1 VOUT2 VOUT3	4.5V	Vcc Vcc Vcc Vcc	Video signal outputs. Output composite video signals.
37 (43) 21 (27) 39 (45) 19 (25)	YOUT1 YOUT2 COUT1 COUT2	4.5V	Vcc (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Y/C signal outputs. YOUT1, YOUT2 pins: Luminance signal output COUT1, COUT2 pins: Chrominance signal output

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
31 (37) 29 (35)	YIN1 CIN1	4.5V	20k 31 150 28k 150 28k	Input the Y/C separated signal of VOUT1 output.
36 (42)	BIAS	4.5V	36	Internal reference bias (Vcc/2). A capacitor is connected between this pin and GND.
35 (41) 24 (30)	TRAP1 TRAP2	4.5V	Vcc 35 24 ★ 1k #	Connect the subcarrier trap circuits.
33 (39) 22 (28) 18 (24) 32 (38) 20 (26) 16 (22)	LOUT1 LOUT2 LOUT3 ROUT1 ROUT2 ROUT3	4.6V	Vcc	Audio signal outputs. Zoυτ=50Ω (Within DC ±2mA)
13 (19)	SCL	_	13 4k Vcc	I ² C bus signal input. VIL=1.5V (max.) VIH=3.0V (min.)

Pin No.	Symbol	Pin voltage	Equivalent circuit	Description
14 (20)	SDA		14 Vcc	I ² C bus signal input/output. VIL= 1.5V (max.) VIH= 3.0V (min.) VOL=0.4V (max.)
15 (21)	ADR	_	Vcc 150 72k W W W W W W W W W W W W W W W W W W W	Selects the slave address for the I ² C bus. 90H at 1.5V or less 92H at 2.5V or more 90H when open
48 (6) 6 (12) 12 (18)	S1 S2 S3	_	48 6 12 100k	Video/S signal selection. S signal output at 0.8V or less Video signal output at 1.4V or more S signal output when open
28 (34)	MUTE	_	28 Vcc 28 W W W W W W W W W W W W W W W W W W W	Audio output mute. Mute OFF at 1.5V or less Mute ON at 2.5V or more Mute OFF when open

Electrical Characteristics

(Ta=25°C, Vcc=9V)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Current consumption	Icc	Vcc=9V, no signal, no load	41	51	66	mA
Video system)			<u> </u>			<u> </u>
Gain	GVv	f=100kHz, 0.3Vp-p input (Fig. 1)	5.5	6.0	6.5	dB
Frequency response characteristics	FBWV1	0.3Vp-p input, input frequency where output amplitude is –3dB with 100kHz output serving as 0dB (Fig. 1)	15	20	_	MHz
Frequency response characteristics (Y/C mix)	FBWV2	0.3Vp-p input, input frequency where output amplitude is –3dB with 100kHz output serving as 0dB (Fig. 1)	10	15		MHz
Input dynamic range	Vdv	f=100kHz, maximum with distortion < 1.0% (Fig. 1)	2.0	_	_	V p-p
Cross talk	Vctv	f=4.43MHz, 1Vp-p input (Fig. 2)	_	_	-50	Vp-p
Audio system)				<u> </u>	<u> </u>	
Gain	GVA	f=1kHz, 1Vp-p input, 6kΩ resistor inserted to input (Fig. 3)	-1	О	1	dB
Frequency response characteristics	FBWA	1Vp-p input, input frequency where output amplitude is -3dB with 100kHz output serving as 0dB (Fig. 3)	50	_	_	kHz
Total harmonic distortion	THD	f=1kHz, 2.2Vp-p input, when 400Hz HPF+80kHz LPF are inserted (Fig. 3)	_	0.03	0.05	%
Input dynamic range	VdA	f=1kHz, maximum with distortion < 0.3 % (Fig. 3)	2.8	3.0		Vrms
Cross talk	VctA	f=1kHz, 1Vp-p input (Fig. 4)	-	-90	-80	dB
Ripple rejection ratio		f=100Hz, 0.3Vp-p applied to Vcc (Fig. 5)	-	-55	-40	dB
Output DC offset	VOFF	Offset voltage between input and output (Fig. 6)	-30	_	30	mV
Residual noise	VNA	fcL=300Hz, fcH=19kHz, 40dB amplifier connected (Fig. 7)	0	_	6.0	mV
S/N ratio	S/N	f=1kHz, 1Vrms input (Fig. 3)	90	100	_	dB

(Logic system)

Item	Symbol	Conditions	Min,	Тур.	Max.	Unit
High level input voltage	ViH		3.0	-	5.0	٧
Low level input voltage	VIL		0	_	1.5	٧
Low level output voltage	VOL	With SDA 3mA current supplied	0	_	0.4	٧
High level input current	liH	VIH=4.5V	0	_	10	μΑ
Low level input current	lıL	VIL=0.4V	0		10	μΑ
Maximum clock frequency	fscL		0		100	kHz
Minimum waiting time for data change	teur		4.0	<u> </u>	_	μs
Minimum waiting time for data transfer start	thd; sta		4.0		<u> </u>	μs
Low level clock pulse width	tLow		4.7	_		μs
High level clock pulse width	thigh		4.0	_	-	μs
Minimum waiting time for start preparation	tsu; sta		4.7	_	_	μs
Minimum data hold time	thd; dat		0			s
Minimum data preparation time	tsu; DAT		250	-		ns
Rise time	tr		-	_	1	μs
Fall time	tr		-	_	300	ns
Minimum waiting time for stop preparation	tsu; sto		4.7	—	_	μs

Electrical Characteristics Measurement Circuit

* Parenthesized numbers indicate Pin No. of CXA1855S.

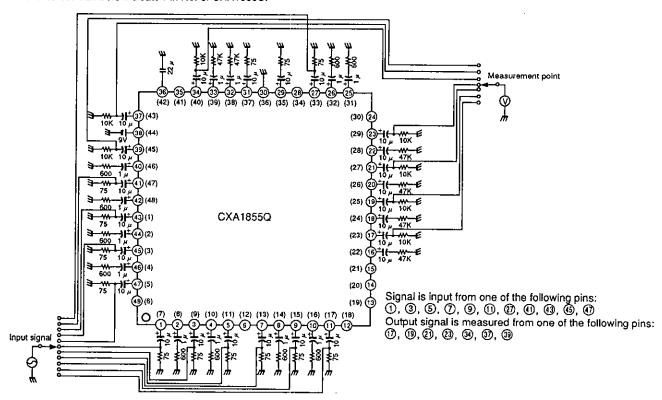


Fig 1. Video system (gain, frequency response characteristics, input dynamic range)

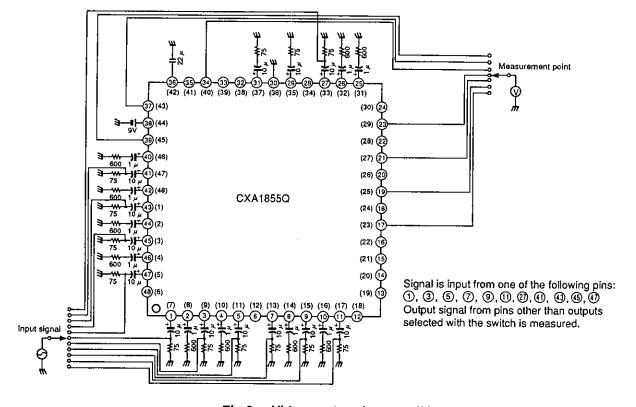


Fig 2. Video system (cross talk)

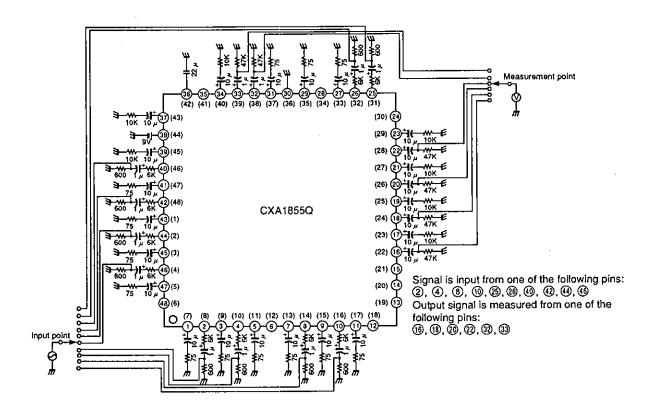


Fig 3. Audio system (gain, frequency response characteristics, total harmonic distortion, input dynamic range)

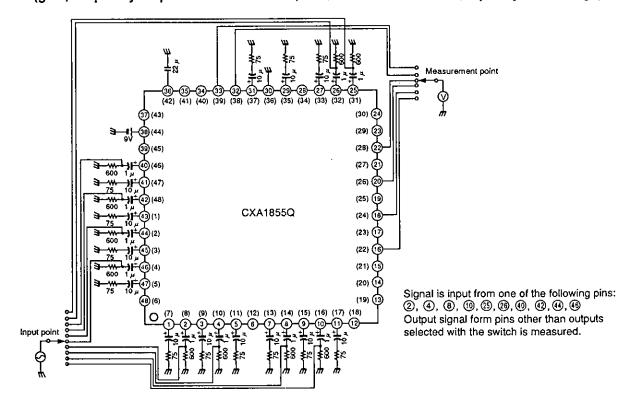


Fig 4. Audio system (cross talk)

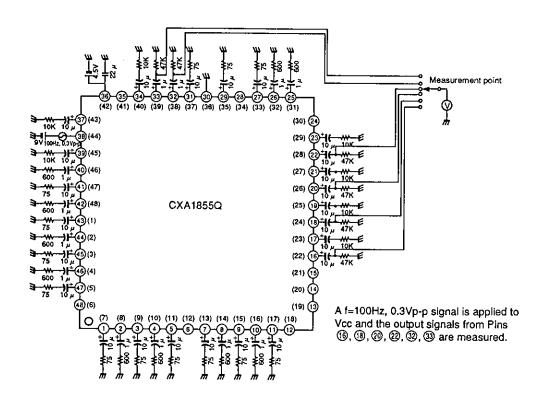


Fig 5. Audio system (ripple rejection)

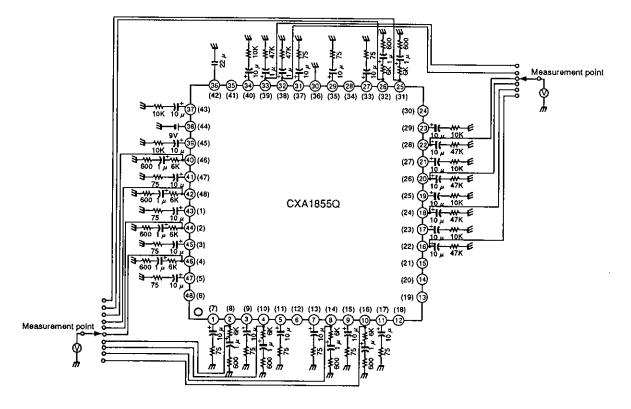


Fig 6. Audio system (output DC offset)

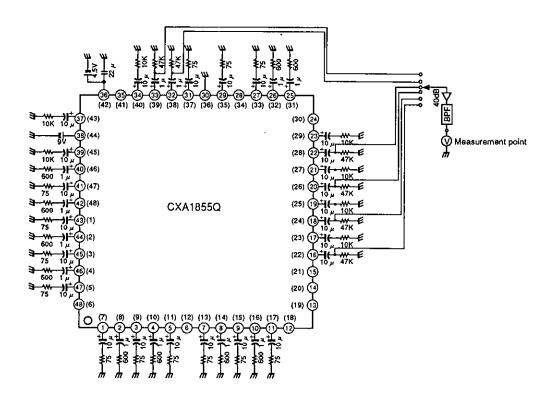
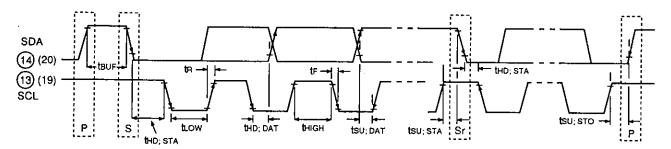



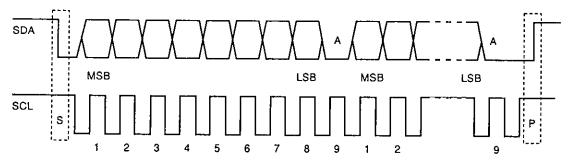
Fig 7. Audio system (residual noise)

I²C Bus Control Signal

* Parenthesized numbers indicate Pin No. of CXA1855S.

Fig 7.

Description of Operation

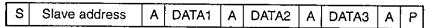

The CXA1855Q/S is a TV I²C bus-compatible AV switch IC. The video system and the stereo audio system both have 5 inputs and 3 outputs each. Each video output is provided with a built-in 6dB amplifier. Desired inputs can be independently assigned to all outputs (in the audio system, the left and right channels are processed as one unit) by I²C bus control.

I²C Bus Registers

(1) I2C Bus

The I²C bus (Inter-IC bus) is an inter-IC bus system developed by Phillips.

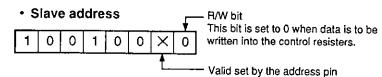
Two wires (SDA-serial data, SCL-serial clock) provide control over start, stop, data transfer, synchronization, and collision avoidance. The IC outputs are either open collector or open drain, forming a bus line in the wired OR format.


- S: Start condition; SDA is set at "Low" when SCL is "High"
- P: Stop condition; SDA is set at "High" when SCL is "High"
- A: Acknowledge signal sent from the slave

Data is transmitted by MSB-first. One data unit consists of 8 bits, to which the acknowledge signal, which indicates that the data has been accepted by the slave, is attached at the end. Normally, the slave*1 IC receives data at the rising edge of SCL and the master*2 IC changes data at the falling edge of SCL.

- *1 Slave: An IC that is placed under the control of the master. In a normal system, all devices excluding the central microcomputer are slaves.
- *2 Master: A central microcomputer or other controlling IC.

(2) Control Registers


The CXA1855Q/S control is exercised by writing 3-byte data into the three 8-bit control registers which control the 3 outputs selector circuits.

S: Start condition

A: Acknowledge

P: Stop condition

DATA1 Provides video 1 output control

DATA2 Provides video 2 output control

DATA3 Provides video 3 output control

Control register structure (DATA1 to DATA3)

_b7_b6	<u>b5</u>	b4	_b3	b2	_b1	b0
S-CONT	VIDEO			AUDIO		
(2)	(3)			(3)		

Parenthesized numbers indicate the number of bits

Each register is set to 0 upon power ON.

Video switch control (VIDEO)

	b5	b4	b3	Input signal selected
١	0	0	0	Mute
ł	0	0	1	TV
1	0	1	0	1V system
ı	0	1	1	2V system
ļ	1	0	0	3V system
l	1	0	1	ÉV

1V system: V1, Y1, C1

2V system: V2, Y2, C2

3V system: V3, Y3, C3

Others-Mute

Audio switch control (AUDIO)

b2	b1	b0	Input signal selected
0	0	0	Mute
0	0	1	RTV/LTV
0	1	0	RV1/LV1
0	1	1	RV2/LV2
1	0	0	RV3/LV3
1	0	1	REV/LEV

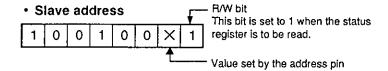
Others-Mute

S input control (S CONT)

b7	b6	Output pin
1	0	Selects the composite input
1	_1	Selects the S input

Composite input: TV, V1, V2, V3, EV

S input: Y1, C1, Y2, C2, Y3, C3


Note) The YOUT1 and COUT1 switches are also switched by this control.

(3) Status Registers

	,				
S	Slave address	Α	DATA	NA	Р

- S: Start condition
- P: Stop condition
- A: Acknowledge

When communication is to be terminated in the status register reading mode, the "no acknowledge" signal is needed to assure that the master does not issue the acknowledge signal to slave.

DATA

b7	b6	b5	b4	b3	b2	b1	b0
PONRES	×	S1 OPEN	S1 SEL	S2 OPEN	S2 SEL	S3 OPEN	S3 SEL

PONRES

When the CXA1855Q/S is reset upon power ON, logical 1 is returned. Once a read operation is completed, logical 0 is returned.

S1 to S3 OPEN

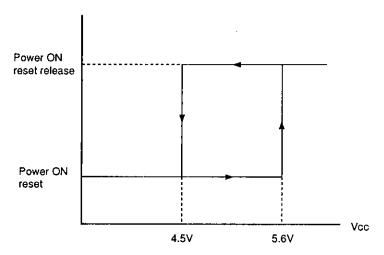
0: S1 to S3 pins are not open.

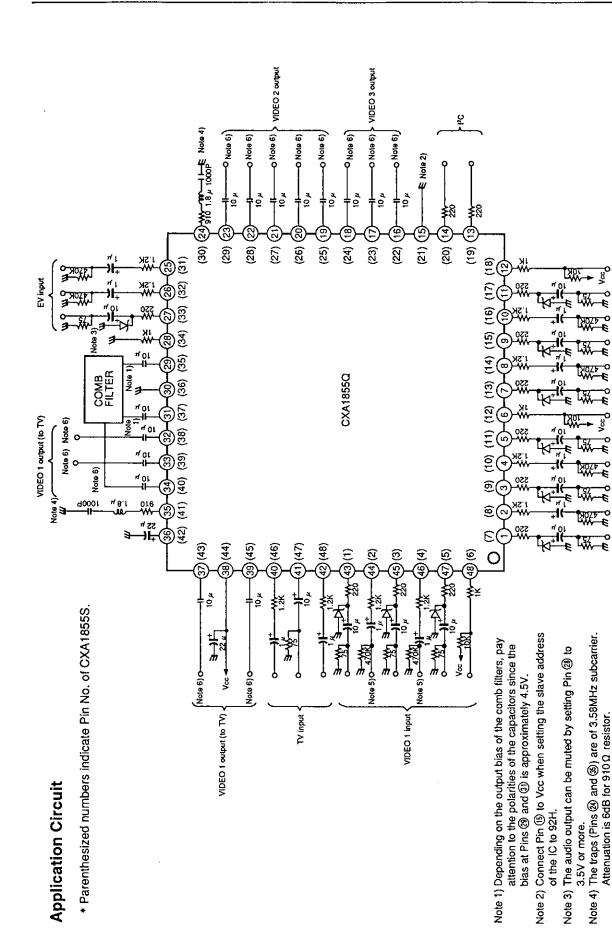
1: S1 to S3 pins are open.

S1 to S3 SEL

0: S1 to S3 pins are not grounded.

1: S1 to S3 pins are grounded.


In actually, the logic states of the S1 to S3 OPEN and the S1 to S3 SEL bits are determined by comparing the DC voltages of S1 to S3 pins to two threshold values.


DC voltage of S1 to S3 pins	S1 to S3 OPEN	S1 to S3 SEL
0.8V or less	0	1
1.3V or more, 3.5V or less	0	0
4.5V or more	1	0

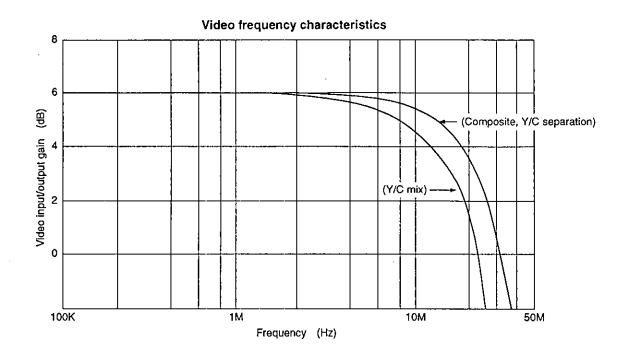
(4) Power ON reset

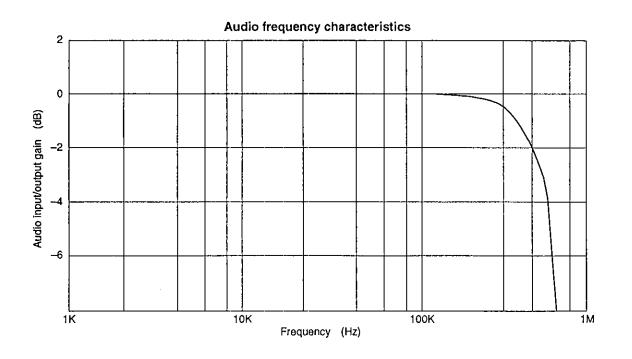
The CXA1855Q/S incorporates the power ON reset function. Therefore, each control register is reset to 0 upon power ON. The power ON reset Vcc and released Vcc are as shown below.

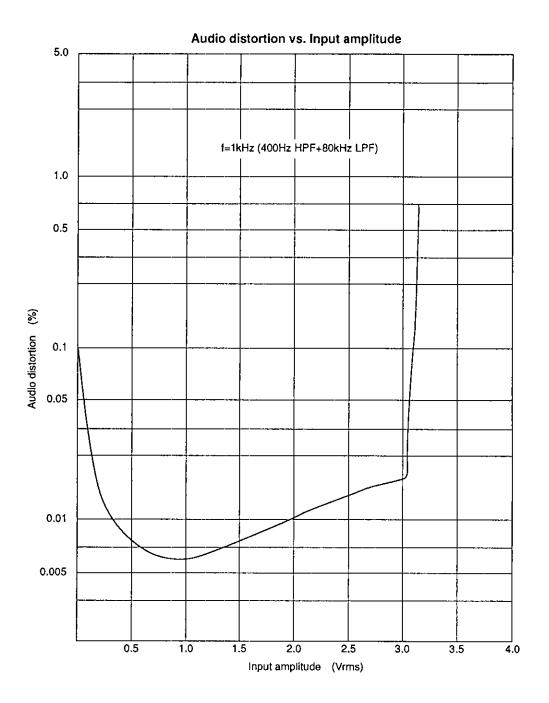
The power ON reset VTH is hysteretical. The PONRES bit of the status register is read to determine whether the IC is reset upon power ON.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

VIDEO 3 input Note 5)

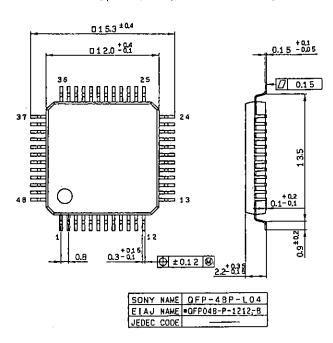

Note 5)


Note 5) VIDEO 2 input


Note 5)

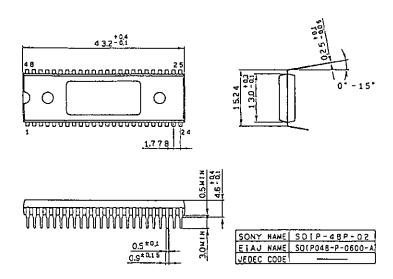
Note 5) The output impedance of the audio signal source

Example of Representative Characteristics



Package Outline

Unit: mm


CXA1855Q

48pin QFP (Plastic) 0.7g

CXA1855S

48pin SDIP (Plastic) 600mil 5.1g

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.