
R.G.B VIDEO PROCESSOR FOR MONITOR

The DBL 2056 is a wideband video amplifier system intended for high resolution RGB color monitor applictions. In addition to three matched video amplifiers, the DBL 2056 contains three gated differential input black level clamp comparators for brightness control and three matched attenuator circuits for contrast control. Each video amplifier con tains a gain set or "DRIVE" node for setting maximum system gain($Av=4\sim10$) as well as providing trim capability. The DBL 2056 also contains a voltage reference for the video inputs.

FEATURES

- Three wideband video amplifiers(70MHz, --3dB)
- \circ Inherently matched ($\pm 0.1, 1.2\%$) attenuators for contrast control
- O Three externally gated comparators for brightness control
- Provisions for independent gain control (Drive) of each video amplifier
- Video input voltage reference
- Low impedance output driver

USE

C-TVs, Monitors and Display Applications.

1. DC Characteristics (Vcc1=Vcc2=12V, Ta=25°C)

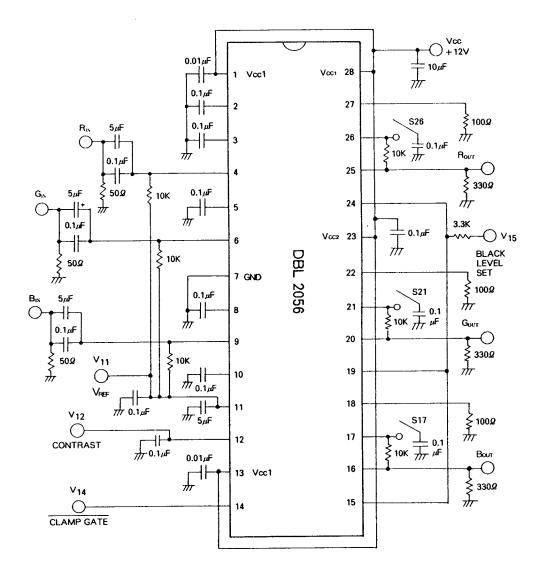
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Supply current	I _S	Vcc1 Only	65	73	90	mA
Video Input Reference Voltage	V ₁₁		2.2	2.4	2.6	V
Video Input Bias Current	۱ _ь	Any One Amplifier		5.0	20	μA
Clamp Gate Low Input Voltage	V _{14L}	Clamp Comparators On	0.8	1.2	-	V
Clamp Gate High Input Voltage	V _{14H}	Clamp Comparators Off	_	1.6	2.0	v
Clamp Gate Low Input Current	I ₁₄	∨₁₄=0∨	_	-0.5	-5.0	μA
Clamp Gate High Input Current	_{14H}	V14=12V		0.005	1.0	μA
Clamp Cap Charge Current	l _{demp+}	V _{5,& 10} =0V	650	850	1000	μA
Clamp Cap Discharge Current	l _{demp-}	V5.8.10=5V	-650	-850	- 1000	μA
Video Output Low Voltage	Val	V _{5.8.10} =0∨	-	0.9	1,25	V
Video Output high Voltage	Vон	V _{5.8.10} =5V	8.2	8.9	-	V
Video Output Offset Voltage	∆V₀(2V)	Between Any Two Amplifiers V ₁₅ =2V	_	±0.5	±50	mV
Video Output Offset Voltage	∆∿(4∨)	Between Any Two Amplifiers V ₁₅ =4V	_	±0.5	±50	mV

* Unless otherwise specified, S17, 21, 26 Open, V12=6V, V14=0V, V15=2.0V

•

ELECTRICAL CHARACTERISTICS

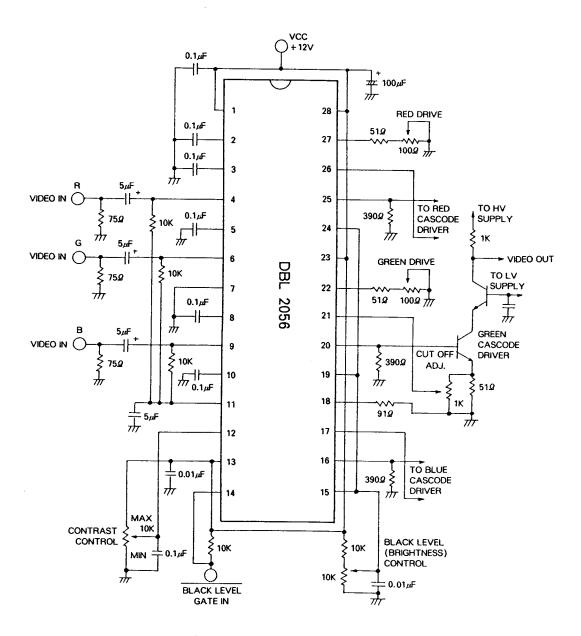
2. AC Characteristics (Vcc1=Vcc2=12V, Ta=25°C)


Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Video Amplifier Gain	Avmex	V ₁₂ =12V V _N =560mVp-p	4.5	6.0	6.7	V/V
Attenuation at $V_{12}=5V$	∆ A, 5V	Ref: A _{vmax} , V ₁₂ =5V		-1.0	_	dB
Attenuation at $V_{12}=2V$	∆ A,2 V	Ref: A _{vmax} , V ₁₂ =2V		-40		dB
Absolute Gain Match at A _{vmax}	Avmextch	V ₁₂ =5V(Note 3)	_	±0.5	-	dB
Gain Change Between Amp.	∆A _{vtrack} 1	V ₁₂ =5V(Note 3, 6)	-	±0.1	±0.5	dB
Gain Change Between Amp.	△A _{vtrack} 2	V ₁₂ =2V(Note 3, 6)	-	±0.3	±0.7	dB
Video Amplifier Distortion	THD	V ₁₂ =3V,		0.5	_	%
		V _o =1Vp-p	-			
Video Amplifier Distortion	f(-3dB)	V ₁₂ =12V, V₀ =100mV _{ms}		70	_	MHz
		(Noto 2,4)	-			
Output Rise Time	Tr	$V_0 = 4Vp - p(Note 2)$	-	5	-	ns
Output Fall Time	Tr	$V_{o} = 4Vp - p(Note 2)$	-	7	-	ns
Video Amplifier 10kHz	Vsep	V ₁₂ =12V (Note 5)		-65	_	đB
isolation	(10kHz)					
Video Amplifier 10MHz	Vsep	V ₁₂ =12∨ (Note 2, 5)	_	-45	_	dB
Isolation	(10MHz)					

* Unless otherwise specified, S17, 21, 26 Closed, V14=0V, V15=4V

- Note 1: Vcc supply pins 1, 13, 23, 28 must be externally wired together to prevent internal damage during Vcc power on/off cycles.
- Note 2: When measuring video amplifier bandwidth or pulse rise and fall times, a double sided full ground plane printed circuit board without socket is recommended.
- Note 3 : Measure gain difference between any two amplifiers. Vin=1 Vp-p.
- Note 4 : Adjust input frequency from 10KHz(Avmax ref. level) to the -3dB corner frequency(f-3dB).
- Note 5 : Measure output levels of the other two undriven amplifiers relative to driven amplifier to determine channel separation. Terminate the undriven Amplifier inputs to simulate generator loading. Repeat test at fin= 10 MHz for Vsep=10MHz.
- Note 6 : △Av track is a measure of the ability of any two amplifiers to track each other and quantifies the matching of the three attenuators. It is the difference in gain change between any two amplifiers with the Contrast Voltage V12 at either 5V or 2V measured relative to an Avmax condition V12=12V. For example, at Avmax the three amplifiers gains might be 17.4dB, 16.9dB, and 16.4dB and change to 7.3dB, 6.9dB, and 6.5dB respectively for V12=5V. This Yields the measured typical ±0.1dB channel tracking.

DBL 2056


TEST CIRCUIT .

-

DBL 2056

APPLICATION CIRCUIT

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.