
INTEGRATED CIRCUITS

Product specification Supersedes data of March 1991 File under Integrated Circuits, IC01 1999 Apr 29

TDA8444AT

TDA8444; TDA8444T;

Octuple 6-bit DACs with I²C-bus

FEATURES

- Eight DACs with 6-bit resolution
- Adjustable common output swing
- Push-pull outputs
- Outputs short-circuit protected
- Three programmable slave address bits
- Large supply voltage range
- Low temperature coefficient.

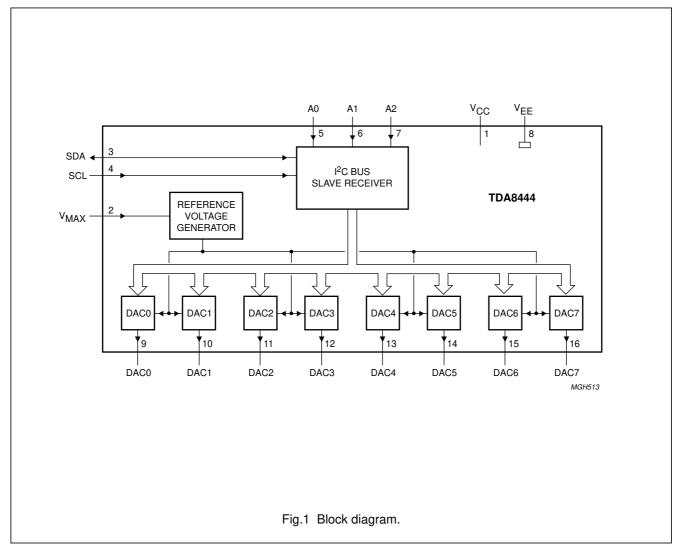
GENERAL DESCRIPTION

The interface circuit is a bipolar IC in a DIP16, SO16, or SO20 package made in an I2L-compatible 18 V process.

The TDA8444 contains eight programmable 6-bit DAC outputs, an I²C-bus slave receiver with three (two for SO16) programmable address bits and one input (V_{MAX}) to set the maximum output voltage. Each DAC can be programmed separately by a 6-bit word to 64 values, but V_{MAX} determines the maximum output voltage for all DACs. The resolution will be approximately $\frac{1}{64}$ V_{MAX}.

At power-on all DACs are set to their lowest value.

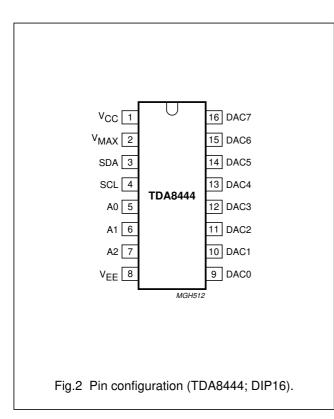
QUICK REFERENCE DATA

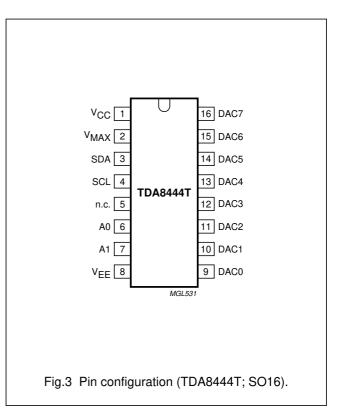

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		4.5	12	13.2	V
I _{CC}	supply current	V _{CC} = 12 V	-	14	-	mA
Р	power dissipation		-	170	-	mW
V _{VMAX}	input effective voltage		1	_	$V_{CC}-2.0$	V
V _{o(DACn)}	DAC output voltage	$V_{MAX} = V_{CC}$	0.1	-	$V_{CC}-0.5$	V
V _{o(DACn)(max)}	maximum DAC output voltage	$1 < V_{MAX} < V_{CC} - 2.0$	_	V _{MAX} + 0.3	_	V
I _{source(min)}	minimum DAC source current	data = 1FH	2	_	_	mA
I _{sink(min)}	minimum DAC sink current	data = 1FH	2	-	-	mA

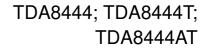
ORDERING INFORMATION

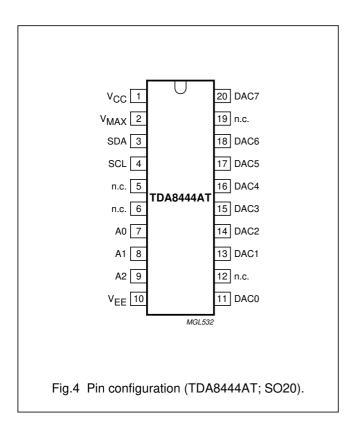
TYPE	PACKAGE					
NUMBER	MBER NAME DESCRIPTION		VERSION			
TDA8444	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1			
TDA8444T	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1			
TDA8444AT	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1			

TDA8444; TDA8444T; TDA8444AT


BLOCK DIAGRAM




TDA8444; TDA8444T; TDA8444AT


PINNING

		PIN		
SYMBOL	TDA8444 (DIP16)	TDA8444T (SO16)	TDA8444AT (SO20)	DESCRIPTION
V _{CC}	1	1	1	supply voltage
V _{MAX}	2	2	2	control input for DAC maximum output voltage
SDA	3	3	3	I ² C-bus serial data input/output
SCL	4	4	4	I ² C-bus serial clock
A0	5	6	7	programmable address bit 0 for I ² C-bus slave receiver
A1	6	7	8	programmable address bit 1 for I ² C-bus slave receiver
A2	7	_	9	programmable address bit 2 for I ² C-bus slave receiver
V _{EE}	8	8	10	ground
DAC0	9	9	11	analog voltage output 0
DAC1	10	10	13	analog voltage output 1
DAC2	11	11	14	analog voltage output 2
DAC3	12	12	15	analog voltage output 3
DAC4	13	13	16	analog voltage output 4
DAC5	14	14	17	analog voltage output 5
DAC6	15	15	18	analog voltage output 6
DAC7	16	16	20	analog voltage output 7
n.c.	-	5	5, 6, 12, 19	not connected

FUNCTIONAL DESCRIPTION

I²C-bus interface

The I²C-bus interface is a receive-only slave, which accepts data according the format shown in Table 1.

Table 1I²C-bus format (see note 1)

S	0 1 0 0 A2 A1 A0 0	A	13 12 11 10 SD SC SB SA	А	X X D5 D4 D3 D2 D1 D0	Α	Ρ

Note

1. S = START condition; A2 to A0 = programmable address bits; A = Acknowledge; I3 to I0 = Instruction bits; SD to SA = subaddress bits; X = don't care; D5 to D0 = data bits; P = STOP condition.

Valid addresses are:

TDA8444 and TDA8444AT: 40H, 42H, 44H, 46H, 48H, 4AH, 4CH and 4EH

TDA8444T: 48H, 4AH, 4CH and 4EH (A2 is always logic 1).

All other addresses cannot be acknowledged by the circuit. The actual slave address depends on the programmable address bits A2, A1 and A0. This way up to eight circuits can be used on one I²C-bus.

Valid instructions are: 00H to 0FH; F0H to FFH.

The circuit will not react to other combinations of the 4 instruction bits I3 to I0 than 0 or F, but will still generate an acknowledge. The difference between instruction 0 and F is only important when more than one data byte is sent within one transmission. Instruction 0 causes the data bytes to be written into the DAC-latches with consecutive subaddresses starting with the subaddress given in the instruction byte (auto-increment of subaddress), while instruction F will cause a consecutive writing of the data bytes into the same DAC-latch whose subaddress was given in the instruction byte. In case of only one data byte the DAC-latch with the subaddress equal to the subaddress in the instruction byte will receive the data.

Valid subaddresses are: 0H to 7H.

The subaddresses correspond to DAC0 to DAC7. The Auto-Increment (AI) function of instruction 0, however, works on all possible subaddresses 0 to F in such a way that next to subaddress F, subaddress 0 will follow, and so on.

The data will be latched into the DAC-latch on the positive-going edge of the acknowledge related clock pulse.

The specification of the SCL and SDA I/O meets the I^2 C-bus specification. For protection against positive voltage pulses on pins 3 and 4, zener diodes are

TDA8444; TDA8444T; TDA8444AT

connected between these pins and $V_{\text{EE}}.$ This means that normal bus line voltage should not exceed 5.5 V.

The address inputs A0, A1 and A2 can be easily programmed by either a connection to V_{EE} (An = 0) or V_{CC} (An = 1). If the inputs are left floating the result will be An = 1.

V_{MAX}

The V_{MAX} input gives a means of compressing the DAC output voltage swing. The maximum DAC output voltage will be equal to V_{MAX} + V_{DAC(min)}, while the 6-bit resolution is maintained. This enables a higher voltage resolution for smaller output swings.

DACs

The DACs consist of a 6-bit data-latch, current switches and an opamp. The current sources connected to the switches have values with weights 2⁰ to 2⁵. The sum of the switched on currents is converted by the opamp into a voltage between approximately 0.5 and 10.5 V if $V_{MAX} = V_{CC} = 12$ V. The DAC outputs are short-circuit protected against V_{CC} and V_{EE} . Capacitive load on the DAC outputs should not exceed 2 nF in order to prevent possible oscillations at certain levels. The temperature coefficient for each of the outputs remains in all possible conditions well below 0.1 LSB per Kelvin.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	
V _{CC}	supply voltage	-0.5	+18	V	
I _{CC}	supply current	-10	+40	mA	
P _(max)	maximum power dissipation	-	500	mW	
V _{i(n)}	input voltage	-0.5	+5.9	V	
	pins SDA and SCL	-0.5	+5.9	V	
	pins V_{MAX} , A0 to A2 and DAC0 to DAC7	-0.5	V _{CC} + 0.5	V	
In	current in all pins except V_{CC} and V_{EE}	-	±10	mA	
T _{stg}	storage temperature	-65	+150	°C	
T _{amb}	operating ambient temperature	-20	+70	°C	

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611-E".

TDA8444; TDA8444T; TDA8444AT

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air		
	TDA8444		75	K/W
	TDA8444T	note 1	100	K/W
	TDA8444AT	note 1	85	K/W

Note

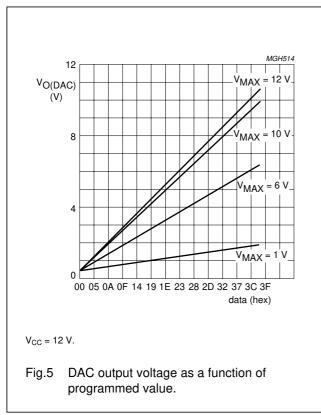
1. When mounted on a Printed-Circuit Board (PCB).

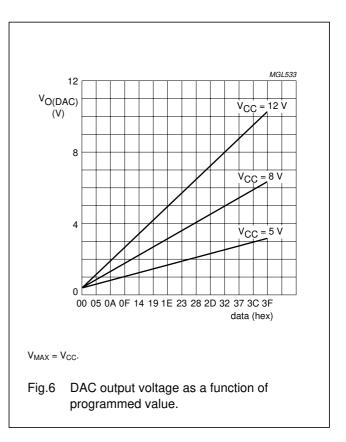
CHARACTERISTICS

 V_{CC} = 12 V; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply					•	
V _{CC}	supply voltage		4.5	12	13.2	V
I _{CC}	supply current	$V_{MAX} = V_{CC} = 12 V;$ data = 00H	12	14	19	mA
Р	power dissipation		-	170	250	mW
V _{rst}	power reset voltage		1	_	4	V
Pin V _{MAX}				·		
V _{i(VMAX)}	input effective voltage		1	-	$V_{CC}-2.0$	V
li	input current	$V_{MAX} = V_{CC}$	-	-	10	μA
		$V_{MAX} = 1 V$	-	_	10	μA
Pins SDA a	nd SCL					
VI	input voltage		0	-	5.5	V
V _{IL}	LOW-level input voltage		_	_	1.0	V
V _{IH}	HIGH-level input voltage		3.0	_	-	V
I _{IL}	LOW-level input current	$V_{SDA} = V_{SCL} = -0.3 V$	-	-	-10	μA
I _{IH}	HIGH-level input current	$V_{SDA} = V_{SCL} = 6 V$	-	_	±10	μA
PIN SDA						
V _{OL}	LOW-level output voltage	I _L = 3 mA	-	-	0.4	V
I _{o(sink)}	output sink current		3	8	-	mA
Address bit	s (A0 to A2)					
VI	input voltage		0	_	V _{CC}	V
V _{IL}	LOW-level input voltage		-	-	1.0	V
V _{IH}	HIGH-level input voltage		2.2	-	_	V
IIL	LOW-level input current	$V_{An} = V_{EE}$	-10	-15	-	μA
I _{IH}	HIGH-level input current	$V_{An} = V_{CC}$	_	_	1	μA

TDA8444; TDA8444T; TDA8444AT

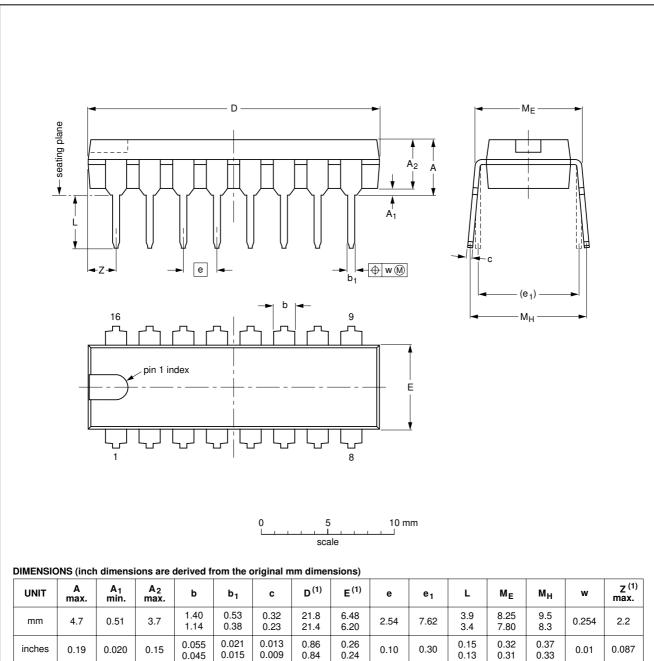

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DACs (DAC	0 to DAC7)			•	-	•
Vo	DAC output voltage	$V_{MAX} = V_{CC}$	0.1	-	$V_{CC} - 0.5$	V
V _{o(min)}	minimum output voltage	data = 00H; I _L = -2 mA	0.1	0.28	0.5	V
V _{o(max)}	maximum output voltage	data = 3FH; I _L = -2 mA				
		$V_{MAX} = V_{CC}$	10.0	10.5	11.5	V
		1 < V _{MAX} < 10 V	-	note 1	-	V
I _{o(sink)}	output sink current	$V_{DAC} = V_{CC};$ data = 1FH	2	8	15	mA
I _{o(source)}	output source current	V _{DAC} = V _{EE} ; data = 1FH	-2	-	-6	mA
Zo	output impedance	$-2 \le I_L \le +2 \text{ mA};$ data = 1FH	_	4	50	Ω
DNL	differential non-linearity	$V_{MAX} = V_{CC};$ $I_L = -2 \text{ mA}$	-	-	±0.5	LSB
INL	integral non-linearity	$V_{MAX} = V_{CC};$ $I_L = -2 \text{ mA}$	-	-	±0.5	LSB
ΔG_{FS}	DC gain match at full-scale	data = 3FH; I _L = -2 mA	_	_	5	%
$\Delta G / \Delta data$	DC gain versus other DAC data change	data = 3FH; I _L = -2 mA	_	<±0.5	_	LSB
ТС	temperature coefficient	data = 3FH; I _L = -2 mA	_	<±0.1	_	LSB/K


Note

Note 1. The output voltage is typically: $\frac{V_{swing}}{(V_{CC}-2.0)} \times V_{MAX} + V_{o(00H)}$ with $V_{swing} = V_{o(3FH)} - V_{o(00H)}$ for $V_{MAX} = V_{CC}$.

TDA8444; TDA8444T; TDA8444AT

TEST AND APPLICATION INFORMATION

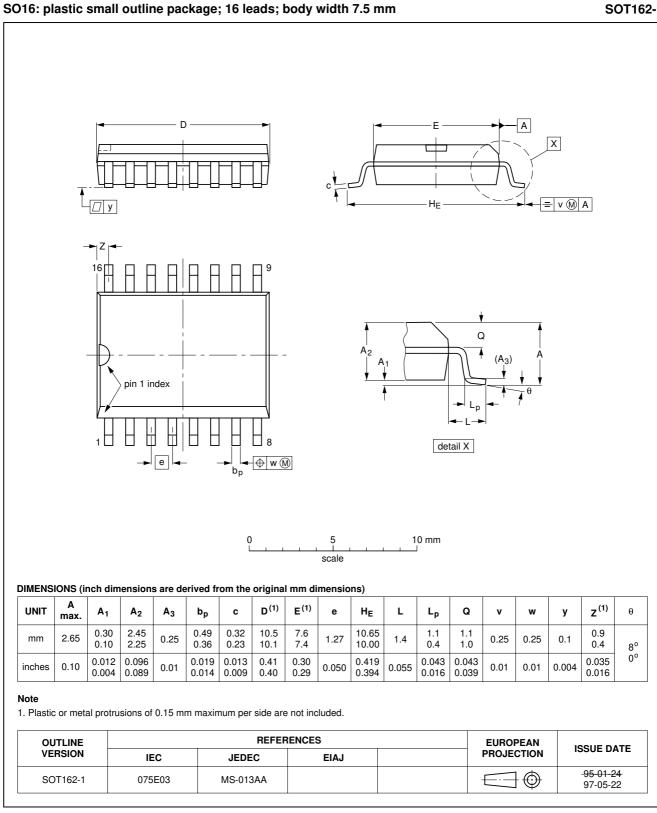

TDA8444AT

TDA8444; TDA8444T;

Octuple 6-bit DACs with I²C-bus

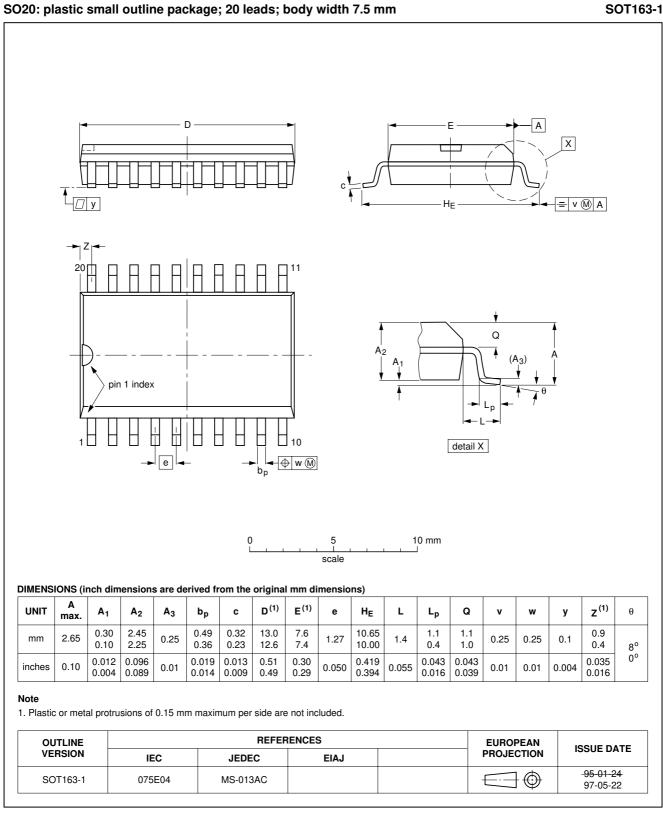
PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body


Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES			EUROPEAN	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-1	050G09	MO-001AE				92-10-02 95-01-19


SOT38-1

TDA8444; TDA8444T; **TDA8444AT**

SOT162-1

TDA8444; TDA8444T; TDA8444AT

TDA8444; TDA8444T; TDA8444AT

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 $^{\circ}$ C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TDA8444; TDA8444T; TDA8444AT

DEFINITIONS

Data sheet status					
Objective specification This data sheet contains target or goal specifications for product development.					
Preliminary specification	Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	oduct specification This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					
Where application information	on is given, it is advisory and does not form part of the specification.				

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

TDA8444; TDA8444T; TDA8444AT

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr 6 A-1101 WIEN P.O. Box 213 Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1999

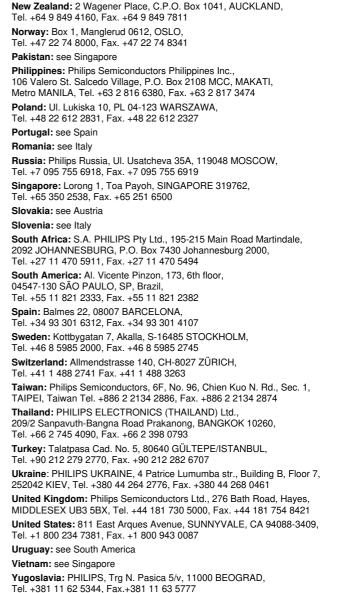
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

545002/750/03/pp16

Date of release: 1999 Apr 29


Document order number: 9397 750 04699

SCA63

Let's make things better.

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

Internet: http://www.semiconductors.philips.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.