H/V PROCESSOR FOR TTL V.D.U

HORIZONTAL SECTION

- SYNCHRONIZATION INPUT : TTL COMPATIBLE, NEGATIVE EDGE TRIGGERED
- SYNCHRONIZATION INDEPENDENT FROM DUTY CYCLE TIME
- OSCILLATOR : FREQUENCY RANGE FROM 15 kHz to 100 kHz
- HORIZONTAL OUTPUT PULSE SHAPER AND SHIFTER
- PHASE COMPARATOR BETWEEN SYNCHRO AND OSCILLATOR (PLL1)
- PHASE COMPARATOR BETWEEN FLYBACK AND OSCILLATOR (PLL2)
- INTERNAL VOLTAGE REGULATOR
- DC COMPATIBLE CONTROLS FOR PHASE AND FREQUENCY
- HORIZONTAL OUTPUT DUTY CYCLE : 41\%

VERTICAL SECTION

- SYNCHRONIZATION INPUT: TTL COMPATIBLE, NEGATIVE EDGE TRIGGERED
- SYNCHRONIZATION INDEPENDENT FROM DUTY CYCLE TIME
- OSCILLATOR : FREQUENCY RANGE FROM 30 Hz to 120 Hz
- RAMP GENERATOR WITH VARIABLE GAIN STAGE
- VERTICAL RAMP VOLTAGE REFERENCE
- INTERNAL VOLTAGE REGULATOR
- DC COMPATIBLE CONTROLS FOR FREQUENCY, AMPLITUDE AND LINEARITY

DESCRIPTION

The TDA9102C is a monolithic integrated circuit for horizontal and vertical sync processing in monochrome and color video displays driven by input TTL compatible signals.
The TDA9102C is supplied in a 20 pin dual in line package with pin 11 connected to ground and used for heatsinking.

PIN CONNECTIONS

BLOCK DIAGRAM

91020S2.EPS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	Supply Voltage	18	V
$\mathrm{V}_{\text {SYNC }}$	Sync Input Peak Voltage	+ Vs	V
І ${ }_{\text {OH }}$	Output Sinking Peak Current (Pin 7 ; t < 3 μ s)	2	A
I_{15}	Output Current (Pin 15)	-10	mA
I_{19}	Output Current (Pin 19)	-10	mA
Ртот	Total power dissipation - $T_{a m b}<70^{\circ} \mathrm{C}$ - $T_{\text {pin }}<90^{\circ} \mathrm{C}$	$\begin{array}{r} 1.4 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & \text { W } \\ & \text { w } \\ & \hline \end{aligned}$
$\mathrm{T}_{\text {STG }}, \mathrm{T}_{\mathrm{J}}$	Storage and Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\mathrm{TH}(J-C)}$	Junction-case Thermal Resistance	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{T H(J-A)}$	Junction-ambient Thermal Resistance	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=12 \mathrm{~V}$, refer to the test circuits, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
HORIZONTAL SECTION						
V_{S}	Supply Voltage Range		10.5	12	15.5	V
Is	Supply Current			40	70	mA
V_{1}	Voltage Reference at Pin 1	$\mathrm{I}_{1}=0.5 \mathrm{~mA}$	3.2	3.5	3.8	V
I_{1}	Current at Pin 1		-1			mA
V_{2}	Voltage Swing at Pin 2		3.7	4	4.3	$V_{\text {PP }}$
K_{0}	Free Running Frequency Constant	$\mathrm{f}_{0}=1 /\left(\mathrm{K}_{0} \times \mathrm{R} 1 \times \mathrm{C} 2\right)$	2.8	3.04	3.2	
$\left\|V_{3}-V_{1}\right\|$	Control Voltage Range	(See technical note 1)	1.6	2.5		V
$\left\|I_{3}\right\|$	Peak Control Current			3		mA
K_{3}	$\text { Gain Phase Comparator } \phi 1$ $\mathrm{K}_{3}=2 \times \mathrm{I}_{3} / 360$			17		$\frac{\mu \mathrm{A}}{\text { degree }}$
V_{4}	Sync Threshold Input (neg. edge)	- Sync high - Sync low	2		$\begin{gathered} \hline 8 \\ 0.8 \end{gathered}$	V
I_{4}	Current at Pin 4	- Input high - Input low	-10		10	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
T4	Input Pulse Duration T = 1/f H	@ $\mathrm{fH}_{\mathrm{H}}=27.64 \mathrm{kHz}$	1		0.9T	$\mu \mathrm{S}$
V_{5}	Monostable Threshold		5.6	6	6.4	V
t_{5}	Internal Pulse Width ($\mathrm{t}_{5}=\mathrm{C} 5 \times \mathrm{V}_{5} / \mathrm{I}_{5}$)	$\begin{aligned} & \mathrm{C} 5=220 \mathrm{pF} \\ & \text { (see technical note 2) } \end{aligned}$		3.6		$\mu \mathrm{s}$
t_{7}	Output Pulse Duration (low) - T = 1/f H	$\begin{aligned} & \mathrm{f}_{\mathrm{H}}=27 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{H}}=70 \mathrm{kHz} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.38 \mathrm{~T} \\ 0.35 \mathrm{~T} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.41 \mathrm{~T} \\ & 0.39 \mathrm{~T} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.44 \mathrm{~T} \\ & 0.43 \mathrm{~T} \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
V_{7} sat	Output Saturation Voltage	$\mathrm{I}_{7}=600 \mathrm{~mA}$		1.2	2.5	V
to	Permissible delay between output pulse leading edge and flyback pulse leading edge (for keeping a constant duty cycle) ; $\mathrm{T}=\frac{1}{f_{H}}$	See technical note 4 @ $\mathrm{f}_{\mathrm{H}}=27 \mathrm{kHz}$	0.41 T - t FLY			S
IfLY	Flyback Input Current at Pin 8	- Flyback On - Flyback Off	$\begin{gathered} 0.7 \\ -1 \end{gathered}$		2	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
V_{8}	Clamp voltage at Pin 8	$\begin{aligned} & \bullet I_{8}=1 \mathrm{~mA} \\ & \bullet I_{8}=-1 \mathrm{~mA} \end{aligned}$	0.6		-0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{8}	Current for switching low the output pulse		0.7		2	mA
$\left\|l_{9}\right\|$	Peak control current			0.9		mA

ELECTRICAL CHARACTERISTICS (continued)
(TAMB $=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=12 \mathrm{~V}$, refer to the test circuits, unless otherwise specified)

| Symbol | Parameter | Test conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| HORIZONTAL SECTION | | | | | | |
| K_{9} | Phase sensitivity at Pin 9 | (See technical note 3) | | 67.5 | | $\frac{\text { degree }}{\mathrm{V}}$ |
| V_{10} | Control voltage range | | 0.5 | | 4.5 | V |
| $\mathrm{~K}_{10}$ | Phase control sensitivity at Pin 10 | 20 | 22.5 | 25 | $\frac{\text { degree }}{\mathrm{V}}$ | |
| HADJ | Horizontal phase adjustment for V_{10} varying
 from 0.5 to $4.5 \mathrm{~V}(27.64 \mathrm{kHz})$ | Zero degree phase: flyback
 centered on the middle of the
 pulse at Pin 5 | -45 | | +45 | degree |
| K_{1} | Phase jitter constant (jitter $=\frac{\mathrm{K}_{1}}{10^{6} \cdot \mathrm{f}_{\mathrm{H}}}$) | | 100 | 150 | ppm | |
| K_{2} | Frequency drift versus supply voltage
 $\mathrm{K}_{2}=\frac{\mathrm{dF} .10^{6}}{\mathrm{dV} . \mathrm{f}_{\mathrm{H}}}$ | $\mathrm{V}_{\mathrm{S}}=10.5 \mathrm{~V}$ to 15.5 V | | | 400 | $\frac{\mathrm{ppm}}{\mathrm{V}}$ |

VERTICAL SECTION

V_{12}	Voltage reference at Pin 12		3.2	3.5	3.8	V
$\frac{I_{13}}{I_{12}}$	Current gain at Pin 13	$\begin{aligned} & l_{12}=100 \mu \mathrm{~A} \\ & \left(l_{12} \max .=200 \mu \mathrm{~A}\right) \end{aligned}$	0.94	1	1.06	
V_{13}	Typical Vertical Sawtooth Amplitude (Pin 13) for Center Frequency	To be adjusted by l_{12}		4		V_{PP}
$\mathrm{t}_{\text {faLl }}$	Discharge time at Pin 13	$\mathrm{C}_{18}=0.22 \mu \mathrm{~F}, \mathrm{~V}_{13}=4 \mathrm{~V}_{\mathrm{PP}}$		10	22	$\mu \mathrm{s}$
fVL	Maximum Vertical Frequency	Vertical Sync Low $\mathrm{C}_{\text {Pin } 13}=220 \mathrm{nF}, \mathrm{R}_{\text {Pin } 12}=58 \mathrm{k} \Omega$		84		Hz
fve	Minimum Vertical Frequency	Vertical Sync High $\mathrm{C}_{\text {Pin } 13}=220 \mathrm{nF}, \mathrm{R}_{\text {Pin } 12}=58 \mathrm{k} \Omega$		56		Hz
K14	Synchro window constant $t_{s}=\frac{K_{14}}{f_{V}}$	(See technical note 6)		0.333		
V_{14}	Sync input threshold (negative edge)	- Sync high - Sync Low	2		$\begin{array}{c\|} \hline 8 \\ 0.8 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{14}	Current at Pin 14	- Input high - Input Low $\mathrm{V}_{14}=0.8 \mathrm{~V}$	-10		10	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
t_{14}	Input pulse duration $T=\frac{1}{f_{V}}$	@ fv $=64.75 \mathrm{~Hz}$	10		0.5T	$\mu \mathrm{s}$
V_{15}	Average value of voltage on Pin 15	$\mathrm{V}_{13}=4 \mathrm{~V}_{\mathrm{PP}}, \mathrm{V}_{16}=2.5 \mathrm{~V}$		4		V
$\mathrm{II}_{15} \mathrm{l}$	Output current at Pin 15				1	mA
K_{15}	Buffer gain constant at Pin 15 $\mathrm{V}_{15 \mathrm{PP}}=\mathrm{K}_{15} . \mathrm{V}_{13 \mathrm{PP}}$	$\mathrm{V}_{16}=2.5 \mathrm{~V}$		0.95		
K_{16}	Buffer variable gain constant at Pin 15 : $\mathrm{K}_{16}=\frac{\Delta \mathrm{V}_{15 \mathrm{PP}}}{\Delta \mathrm{~V}_{16} \cdot \mathrm{~V}_{13 \mathrm{PP}}}$	$\begin{aligned} & 2.5 \mathrm{~V}<\mathrm{V}_{16}<4.5 \mathrm{~V} \\ & 0.5 \mathrm{~V}<\mathrm{V}_{16}<2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline V^{-1} \\ & V^{-1} \end{aligned}$
I_{16}	Input bias current at Pin 16	$\mathrm{V}_{16}=0.5 \mathrm{~V}$	-50			$\mu \mathrm{A}$
l_{17}	Input bias current at Pin 17	$\mathrm{V}_{17}=4.5 \mathrm{~V}$			50	$\mu \mathrm{A}$
V_{18}	Average voltage at Pin $18: \mathrm{V}_{18}=2+\frac{\mathrm{V}_{18 \mathrm{PP}}}{2}$	$\mathrm{V}_{17}=3.5 \mathrm{~V}, \mathrm{R}_{18}$ not connected		3		V
K18	Linearity correction constant : $\mathrm{K}_{18}=\frac{\Delta \mathrm{V}_{18 \mathrm{PP}}}{\Delta \mathrm{V}_{17}}$	$\mathrm{V}_{13 \mathrm{PP}}=4 \mathrm{~V}, 1.5 \mathrm{~V}<\mathrm{V}_{17}<4.5 \mathrm{~V}$		1		
V_{19}	Voltage reference at Pin 19	(See technical note 5)	7.6	8	8.4	V
$\mid 19_{19}$ \|	Current at Pin 19				2	mA

ELECTRICAL CHARACTERISTICS (continued)
(TAMB $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$, refer to the test circuits, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
VERTICAL SECTION						
K_{17}	Frequency drift versus supply voltage $\mathrm{K}_{17}=\frac{\mathrm{dF} .10^{6}}{\mathrm{dV} . \mathrm{fv}^{\prime}}$	$\mathrm{V}_{\mathrm{S}}=10.5 \mathrm{~V}$ to 15.5 V			300	$\frac{\mathrm{ppm}}{\mathrm{V}}$

Technical note 1

$\mathrm{f}_{\mathrm{H}}($ nom $)=26.8 \mathrm{kHz}$
$\mathrm{R} 1=6.8 \mathrm{k} \Omega$
$\mathrm{R} 2=56 \mathrm{k} \Omega$
$\mathrm{C} 2=1.8 \mathrm{nF}$
$f_{\text {pull-in }}=f_{H}$ (nom) $\frac{\left|V_{3}-V_{1}\right| / R 2}{V_{1} / R 1}=f_{H \text { (nom) }} \frac{I_{f}}{I_{0}}$
where: $\mathrm{V}_{1}=3.5 \mathrm{~V}$ and $\left|\mathrm{V}_{3}-\mathrm{V}_{1}\right|$ is the control voltage range.
The voltage at Pin 3 is limited by two clamping diodes at the voltage $\mathrm{V}_{3 \mathrm{H}}$ and $\mathrm{V}_{3 \mathrm{~L}}$
When the PLL1 is synchronized and perfectly tuned, $\mathrm{V}_{3}=\mathrm{V}_{1}$.

Remark: The value of C 2 influences the horizontal oscillator free running frequency; it doesn't effect the relative pull-in range. If the horizontal frequency is changed by using R1, the pull-in range changes accordingly with the formula (A).

Technical note 2

The internal pulse " t_{5} ", is generated by the current generator "l5" charging the external capacitor "C5", according with the formula (B):
$\mathrm{t}_{5}=\frac{\mathrm{C} 5 . \mathrm{V}_{5}}{\mathrm{I}_{5}}$
(B), $\mathrm{t}_{5}=\frac{\mathrm{T}_{\mathrm{H}}}{12}$

Technical note 3

$\mathrm{K}_{9}=67.5$ degrees/voltrepresents the slope of the oscillator charging period of the waveform at
Pin 2:
$\mathrm{K}_{9}=\frac{360 \times 0.75}{4} \frac{\text { degree }}{\mathrm{V}}$

Technical note 4

The second PLL can recover the storage of horizontal output stage maintaining a constant duty cycle till the trailing edge of the output pulse gets the trailing edge of the flyback pulse. From this point on, only the leading edge of the output pulse will be shifted covering a total phase shift of: 0.30 T ; overcoming this value, it will produce a notch in the output pulse (@f $\mathrm{f}=27 \mathrm{kHz}$).

Technical note 5

The voltage reference at Pin 19 can be used to polarize the DC operating point of the vertical booster. This voltage corresponds to the double of the mean value voltage of the vertical sawtooth at Pin 13.

Technical note 6

$\frac{V_{H}-V_{L}}{t_{s}}=\frac{V_{H}-V_{L L}}{1 / f_{V}}$
$t_{s}=\frac{\left(V_{H}-V_{L}\right)}{\left(V_{H}-V_{L L}\right)} \frac{1}{f_{V}}=\frac{K_{14}}{f_{V}}$

APPLICATION DIAGRAM (with TDA8172)

PACKAGE MECHANICAL DATA

20 PINS - PLASTIC DIP

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
a1	0.51			0.020		
B	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			24.80			0.976
E		8.80			0.346	
e		2.54			0.100	
e3		22.86			0.900	
F			7.10			0.280
I			5.10		0.130	0.201
L		3.30				0.050
Z			1.27			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1996 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of $I^{2} C$ Components of SGS-THOMSON Microelectronics, conveys a license under the Philips $I^{2} C$ Patent. Rights to use these components in $\mathrm{II}^{2} \mathrm{C}$ system, is granted provided that the system conforms to the lC Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

This datasheet has been downloaded from: www.DatasheetCatalog.com Datasheets for electronic components.

