
INTEGRATED CIRCUITS

Product specification Supersedes data of April 1993 File under Integrated Circuits, IC02 1996 Aug 23

Product specification

8-bit video digital-to-analog converter

TDA8702

FEATURES

- 8-bit resolution
- Conversion rate up to 30 MHz
- TTL input levels
- Internal reference voltage generator
- Two complementary analog voltage outputs
- No deglitching circuit required
- Internal input register
- · Low power dissipation
- Internal 75 Ω output load (connected to the analog supply)
- Very few external components required.

APPLICATIONS

- High-speed digital-to-analog conversion
- Digital TV including:
 - field progressive scan
 - line progressive scan
- Subscriber TV decoders
- Satellite TV decoders
- Digital VCRs.

GENERAL DESCRIPTION

The TDA8702 is an 8-bit Digital-to-Analog Converter (DAC) for video and other applications. It converts the digital input signal into an analog voltage output at a maximum conversion rate of 30 MHz. No external reference voltage is required and all digital inputs are TTL compatible.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA}	analog supply voltage		4.5	5.0	5.5	V
V _{CCD}	digital supply voltage		4.5	5.0	5.5	V
I _{CCA}	analog supply current	note 1	-	26	32	mA
I _{CCD}	digital supply current	note 1	-	23	30	mA
$V_{OUT} - V_{\overline{OUT}}$	full-scale analog output voltage	note 2				
	(peak-to-peak value)	$Z_L = 10 \text{ k}\Omega$	-1.45	-1.60	-1.75	V
		$Z_L = 75 \text{ k}\Omega$	-0.72	-0.80	-0.88	V
ILE	DC integral linearity error		-	_	±1/2	LSB
DLE	DC differential linearity error		_	_	±1/2	LSB
f _{CLK}	maximum conversion rate		_	_	30	MHz
В	-3 dB analog bandwidth	f _{CLK} = 30 MHz; note 3	-	150	-	MHz
P _{tot}	total power dissipation		-	250	340	mW

QUICK REFERENCE DATA

Note

- 1. D0 to D7 connected to $V_{\mbox{\scriptsize CCD}}$ and CLK connected to DGND.
- The analog output voltages (V_{OUT} and V_{OUT}) are negative with respect to V_{CCA} (see Table 1). The output resistance between V_{CCA} and each of these outputs is typically 75 Ω.
- 3. The -3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input code transition (code 0 to 255).

TDA8702

VERSION

SOT38-1

SOT162-1

PACKAGE

DESCRIPTION

plastic dual in-line package; 16 leads (300 mil); long body

plastic small outline package; 16 leads; body width 7.5 mm

ORDERING INFORMATION

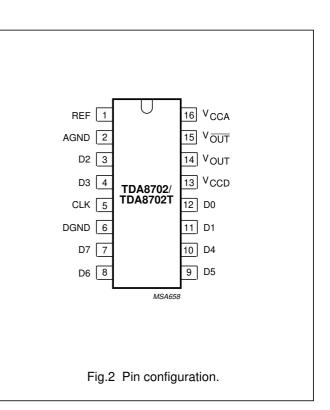
NAME

DIP16

SO16

TYPE NUMBER

TDA8702


TDA8702T

TDA8702

8-bit video digital-to-analog converter

PINNING

SYMBOL	PIN	DESCRIPTION
REF	1	voltage reference (decoupling)
AGND	2	analog ground
D2	3	data input; bit 2
D3	4	data input; bit 3
CLK	5	clock input
DGND	6	digital ground
D7	7	data input; bit 7
D6	8	data input; bit 6
D5	9	data input; bit 5
D4	10	data input; bit 4
D1	11	data input; bit 1
D0	12	data input; bit 0
V _{CCD}	13	positive supply voltage for digital circuits (+5 V)
V _{OUT}	14	analog voltage output
VOUT	15	complementary analog voltage output
V _{CCA}	16	positive supply voltage for analog circuits (+5 V)

TDA8702

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CCA}	analog supply voltage	-0.3	+7.0	V
V _{CCD}	digital supply voltage	-0.3	+7.0	V
$V_{CCA} - V_{CCD}$	supply voltage differential	-0.5	+0.5	V
AGND – DGND	ground voltage differential	-0.1	+0.1	V
VI	input voltage (pins 3 to 5 and 7 to 12)	-0.3	V _{CCD}	V
I _{OUT} /I _{OUT}	total output current (pins 14 and 15)	-5	+26	mA
T _{stg}	storage temperature	-55	+150	°C
T _{amb}	operating ambient temperature	0	+70	°C
Tj	junction temperature	-	+125	°C

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL RESISTANCE

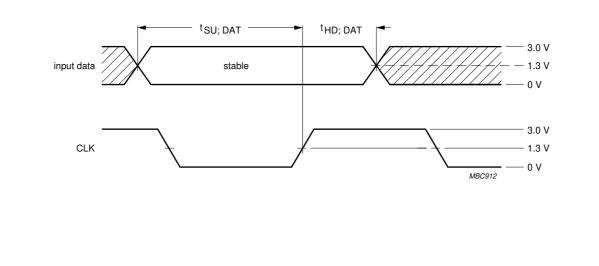
SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	from junction to ambient in free air		
	SOT38-1	70	K/W
	SOT162-1	90	K/W

CHARACTERISTICS

 $V_{CCA} = V_{16} - V_2 = 4.5$ V to 5.5 V; $V_{CCD} = V_{13} - V_6 = 4.5$ V to 5.5 V; $V_{CCA} - V_{CCD} = -0.5$ V to +0.5 V; V_{REF} decoupled to AGND by a 100 nF capacitor; $T_{amb} = 0$ °C to +70 °C; AGND and DGND shorted together; unless otherwise specified (typical values measured at $V_{CCA} = V_{CCD} = 5$ V and $T_{amb} = 25$ °C).

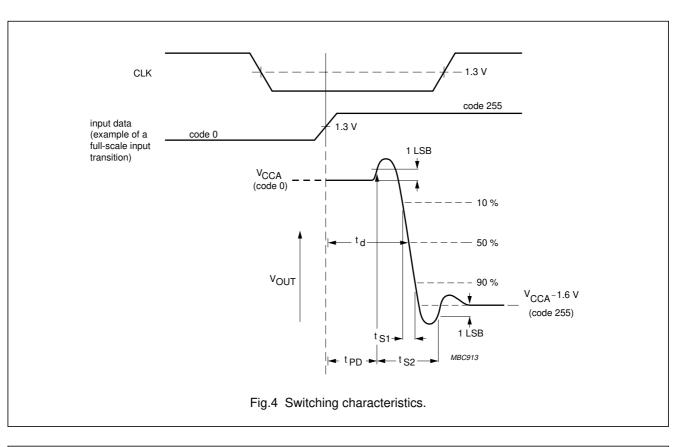
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				1	1	1
V _{CCA}	analog supply voltage		4.5	5.0	5.5	V
V _{CCD}	digital supply voltage		4.5	5.0	5.5	V
I _{CCA}	analog supply current	note 1	_	26	32	mA
I _{CCD}	digital supply current	note 1	_	23	30	mA
AGND – DGND	ground voltage differential		-0.1	_	+0.1	V
Inputs						
DIGITAL INPUTS	(D7 TO D0) AND CLOCK INPUT (CLK)					
V _{IL}	LOW level input voltage		0	-	0.8	V
V _{IH}	HIGH level input voltage		2.0	_	V _{CCD}	V
IIL	LOW level input current	V _I = 0.4 V	_	-0.3	-0.4	mA
I _{IH}	HIGH level input current	V ₁ = 2.7 V	_	0.01	20	μA
f _{CLK}	maximum clock frequency		_	-	30	MHz
Outputs (note 2	2; referenced to V _{CCA})					
V _{OUT} – V _{OUT}	full-scale analog output voltages	$Z_L = 10 \text{ k}\Omega$	-1.45	-1.60	-1.75	V
	(peak-to-peak value)	Z _L = 75 Ω	-0.72	-0.80	-0.88	V
V _{OS}	analog offset output voltage	code = 0	_	-3	-25	mV
V _{OUT} /TC	full-scale analog output voltage temperature coefficient		-	-	200	μV/K
V _{OS} /TC	analog offset output voltage temperature coefficient		-	-	20	μV/K
В	-3 dB analog bandwidth	note 3; f _{CLK} = 30 MHz	-	150	-	MHz
G _{diff}	differential gain		_	0.6	-	%
Φ_{diff}	differential phase		_	1	-	deg
Z _O	output impedance		_	75	-	Ω
Transfer funct	on (f _{CLK} = 30 MHz)	•				
ILE	DC integral linearity error		_	-	±1/2	LSB
DLE	DC differential linearity error		_		±1/2	LSB

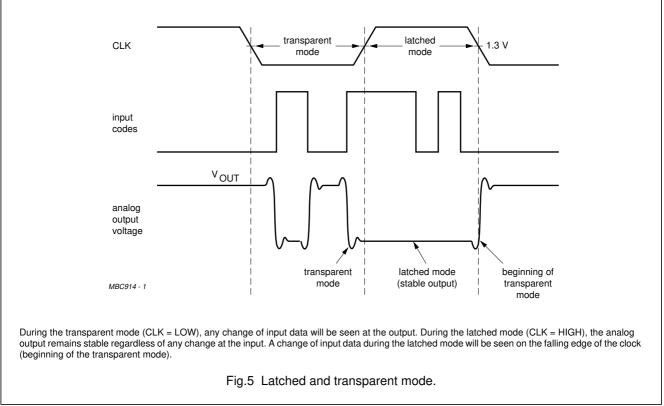
TDA8702

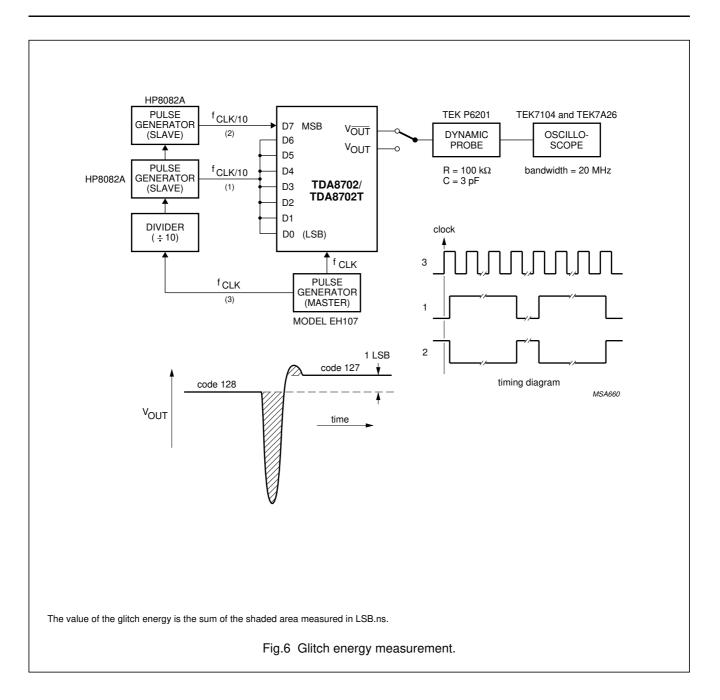

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Switching cha	Switching characteristics (f _{CLK} = 30 MHz); notes 4 and 5; see Figs 3, 4 and 5							
t _{SU;DAT}	data set-up time		-0.3	-	_	ns		
t _{HD;DAT}	data hold time		2.0	-	-	ns		
t _{PD}	propagation delay time		-	-	1.0	ns		
t _{S1}	settling time	10% to 90% full-scale change to \pm 1 LSB	-	1.1	1.5	ns		
t _{S2}	settling time	10% to 90% full-scale change to ±1 LSB	-	6.5	8.0	ns		
t _d	input to 50% output delay time		_	3.0	5.0	ns		
Output transie	ents (glitches; (f _{CLK} = 30 MHz); note	6; see Fig.6						
Eg	glitch energy from code	transition 127 to 128	-	-	30	LSB.ns		

Note

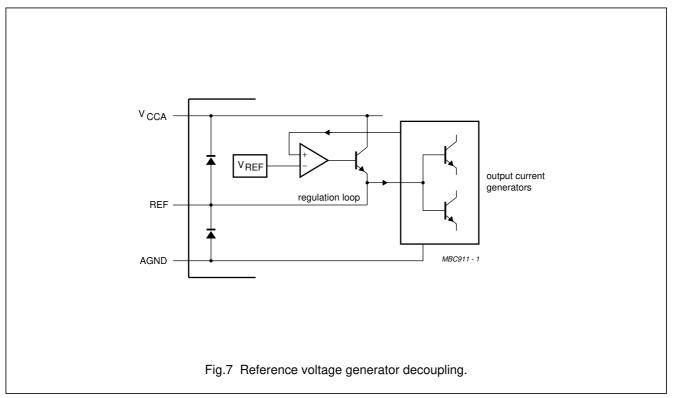
- 1. D0 to D7 are connected to V_{CCD}, CLK is connected to DGND.
- 2. The analog output voltages (V_{OUT} and V_{OUT} are negative with respect to V_{CCA} (see Table 1). The output resistance between V_{CCA} and each of these outputs is 75 Ω (typ.).
- 3. The –3 dB analog output bandwidth is determined by real time analysis of the output transient at a maximum input code transition (code 0 to 255).
- 4. The worst case characteristics are obtained at the transition from input code 0 to 255 and if an external load impedance greater than 75 Ω is connected between V_{OUT} or V_{OUT} and V_{CCA}. The specified values have been measured with an active probe between V_{OUT} and AGND. No further load impedance between V_{OUT} and AGND has been applied. All input data is latched at the rising edge of the clock. The output voltage remains stable (independent of input data variations) during the HIGH level of the clock (CLK = HIGH). During a LOW-to-HIGH transition of the clock (CLK = LOW), the DAC operates in the transparent mode (input data will be directly transferred to their corresponding analog output voltages (see Fig.5).
- 5. The data set-up (t_{SU;DAT}) is the minimum period preceding the rising edge of the clock that the input data must be stable in order to be correctly registered. A negative set-up time indicates that the data may be initiated after the rising edge of the clock and still be recognized. The data hold time (t_{HD;DAT}) is the minimum period following the rising edge of the clock that the input data must be stable in order to be correctly registered. A negative set-up time indicates that the data may be released prior to the rising edge of the clock and still be recognized.
- 6. The definition of glitch energy and the measurement set-up are shown in Fig.6. The glitch energy is measured at the input transition between code 127 to 128 and on the falling edge of the clock.

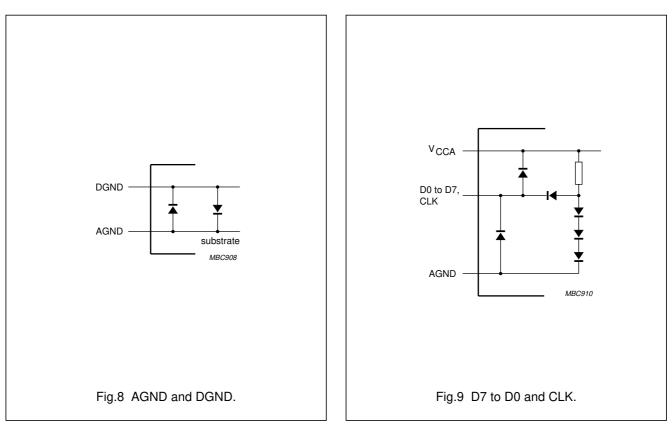

CODE		DAC OUTPUT VOLTAGES				
	INPUT DATA (D7 TO D0)	Ζ _L = 10 ΚΩ		Z _L = 75 Ω		
		V _{OUT}	VOUT	Vout	VOUT	
0	000 00 00	0	-1.6	0	-0.8	
1	000 000 01	-0.006	-1.594	-0.003	-0.797	
128	100 000 00	-0.8	-0.8	-0.4	-0.4	
254	111 111 10	-1.594	-0.006	-0.797	-0.003	
255	111 111 11	-1.6	0	-0.8	0	

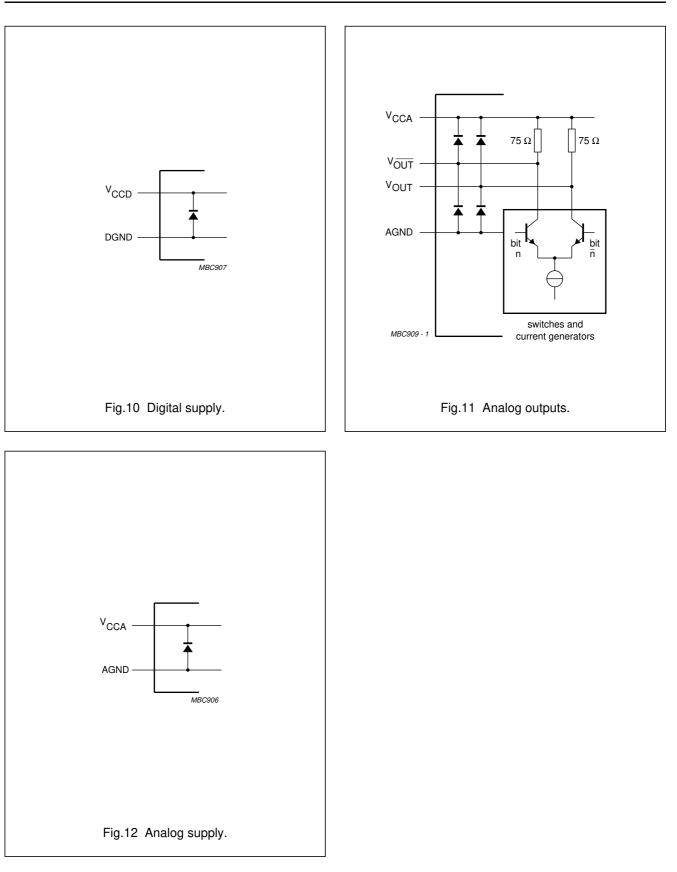

 Table 1
 Input coding and output voltages (typical values; referenced to V_{CCA}, regardless of the offset voltage)



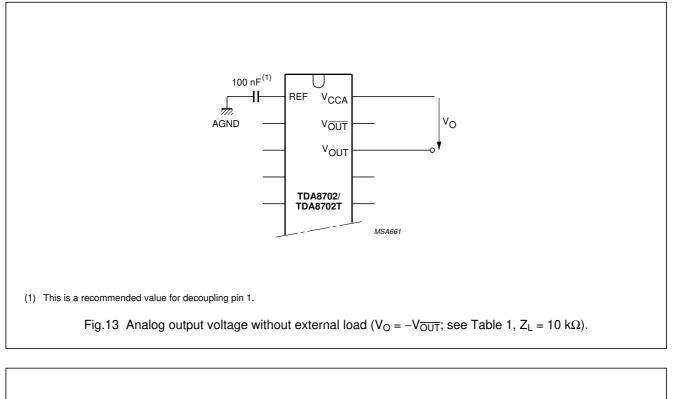
The shaded areas indicate when the input data may change and be correctly registered. Data input update must be completed within 0.3 ns after the first rising edge of the clock ($t_{SU;DAT}$ is negative; -0.3 ns). Data must be held at least 2 ns after the rising edge ($t_{HD;DAT}$ = +2 ns).

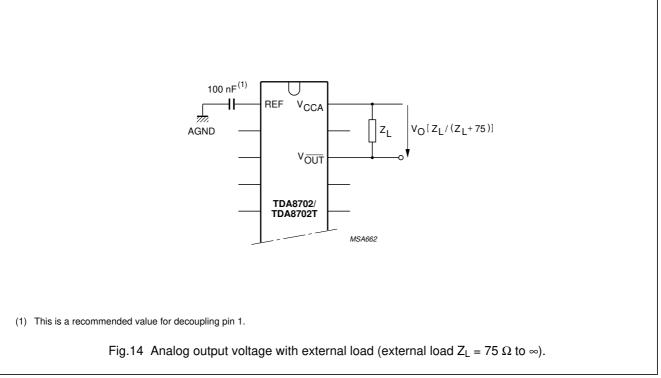

Fig.3 Data set-up and hold times.

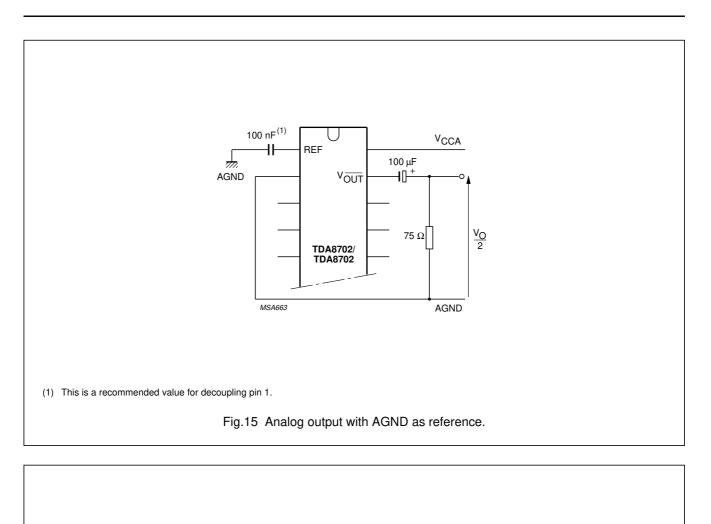


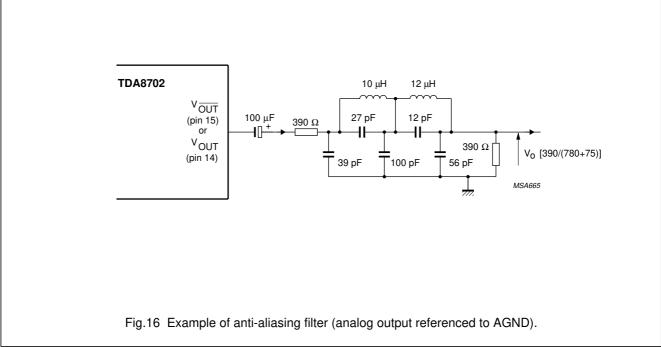


INTERNAL PIN CONFIGURATIONS

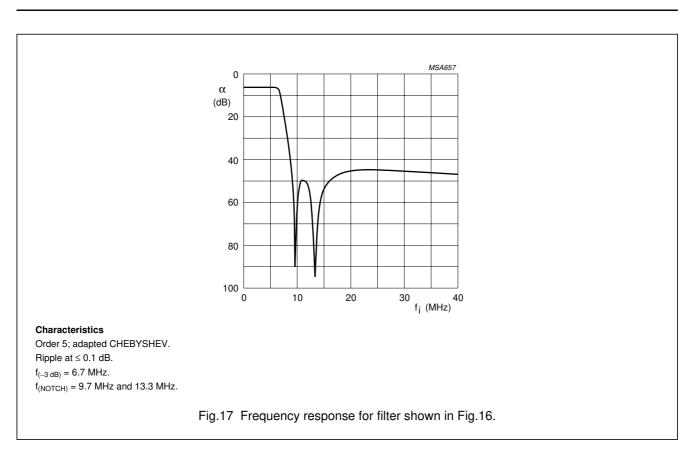


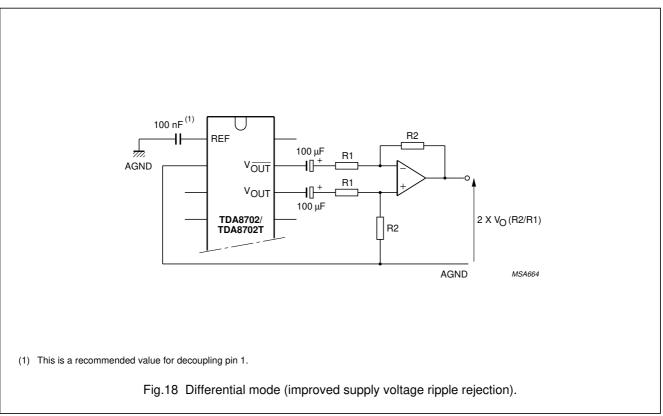





APPLICATION INFORMATION

Additional application information will be supplied upon request (please quote number FTV/8901).





TDA8702

8-bit video digital-to-analog converter

OUTLINE

VERSION

SOT38-1

IEC

050G09

EIAJ

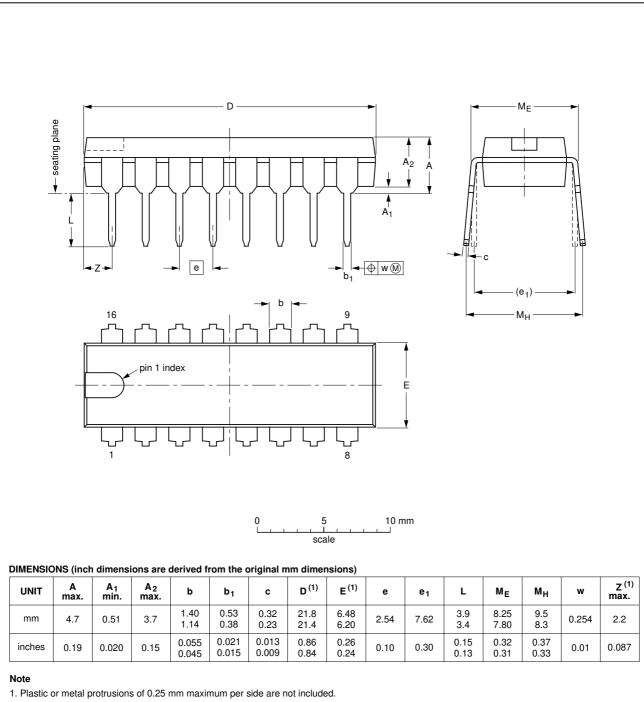
EUROPEAN PROJECTION

ISSUE DATE

92-10-02

95-01-19

REFERENCES


JEDEC

MO-001AE

8-bit video digital-to-analog converter

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

TDA8702

SOT38-1

TDA8702

8-bit video digital-to-analog converter

SO16: plastic small outline package; 16 leads; body width 7.5 mm SOT162-1 D А Х H_E = v 🕅 A 7 y Q A₂ (A) pin 1 index L. Π Π 8 detail X e 0 w bp 10 mm 5 0 scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) Α D⁽¹⁾ E⁽¹⁾ z⁽¹⁾ UNIT A₁ A₂ A₃ bp с е H_{E} L Lp Q v w у θ max 2.45 0.49 10.65 0.9 0.30 0.32 10.5 7.6 1.1 1.1 mm 2.65 0.25 1.27 0.25 0.25 0.1 1.4 0.4 2.25 0.36 0.23 7.4 10.00 0.4 1.0 0.10 10.1 8° 0° 0.012 0.096 0.019 0.013 0.41 0.30 0.419 0.043 0.043 0.035 0.10 0.01 inches 0.01 0.050 0.055 0.01 0.004 0.004 0.089 0.014 0.009 0.40 0.29 0.394 0.016 0.039 0.016 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN ISSUE DATE VERSION PROJECTION IEC JEDEC EIAJ 95-01-24 \square SOT162-1 075E03 MS-013AA 97-05-22

1996 Aug 23

17

TDA8702

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

SO

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 $^{\circ}$ C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TDA8702

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.			
Application information				

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.