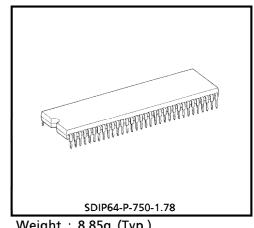
TENTATIVE


TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8880CN

VIDEO, CHROMA, AND SYNC. SIGNAL PROCESSING IC FOR PAL/NTSC / SECAM-SYSTEM COLOR TELEVISIONS

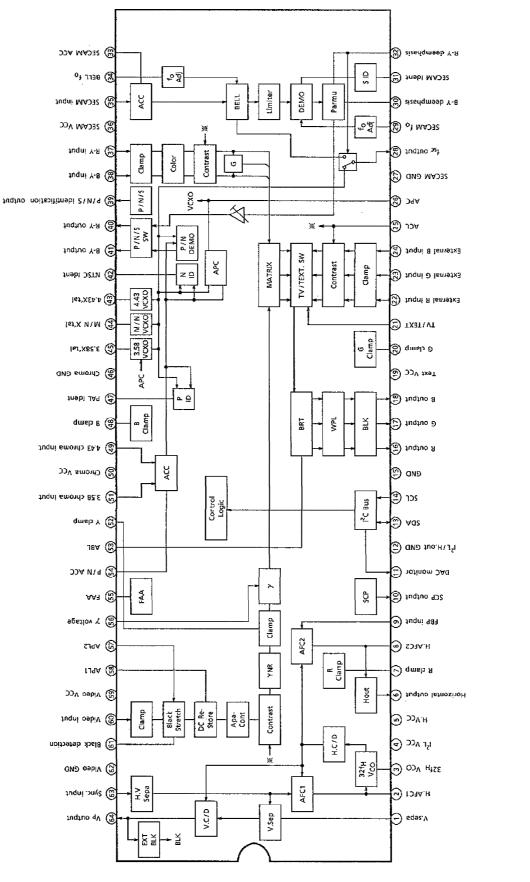
The TA8880CN is a signal processing IC for a PAL/NTSC/ SECAM-system color television involving video, chroma, and sync. signal processing circuits in a 64-pin shrink DIP plastic package.

The video section contains a high-performance picture quality emphasis circuit, the chroma section contains a PAL/NTSC/SECAM-system automatic identification circuit, and the sync. section contains a 50/60Hz automatic identification circuit. The PAL/SECAM demodulating circuit uses a baseband signal processing system, providing an adjustment-free demodulating circuit. User control functions, system switching, etc. are controlled via the I²C bus.

Weight : 8.85g (Typ.)

FEATURES

Video section


- Sharpness control with internal delay lines
- Black stretching circuit
- YNR
- Variable DC restoration ratio
- Gamma (γ) contrast correction

Chroma section

- PAL/SECAM baseband demodulation system
- Automatic crystal frequency identification (4.43MHz/3.58MHz/M, N-PAL)
- Automatic chroma system identification (PAL/NTSC/SECAM)
- PLL SECAM adjustment-free demodulating circuit without any tank coils
- Built-in SECAM BELL filter

Sync. section

- Adjustment-free horizontal and vertical oscillation circuits based on countdown system
- Automatic vertical frequency identification (50 / 60Hz)3

TA8880CN - 2

TERMINAL FUNCTION

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
1	V.Sepa	This pin is for a vertical sync. signal separation filter.	1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	DC 6V 100mV _{p-p}
2	H.AFC1	This pin is for a horizontal AFC filter. The voltage at this pin determines the frequency of horizontal output.		DC 7.6V
3	32f _H V _{CO}	This pin is for a ceramic resonator for horizontal oscillation. For this resonator, we recommend the CSB503F30 made by MURATA ELECTRONICS Co.		DC 6V
4	I ² L V _{CC}	This is the power supply for the logic processing circuit. Apply 3.3V (typ.) to this pin.	_	_
5	H.V _{CC}	This is the power supply for the horizontal sync. circuit. Apply 9V (typ.) to this pin.	_	_
6	Horizontal output	This is a horizontal output terminal.		High : 5V Low : 0V Duty cycle : 41%

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
7 20 48	R clamp G clamp B clamp	These pins are for the R, G, and B output clamping filters.	7 20 48 48 48 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω Clamp	DC 3.5V~4.5V
8	H.AFC2	This pin is for a H.AFC2 filter. The voltage at this pin determines the phase of the horizontal output.	$(B) \\ (B) \\ (B) \\ (C) $	DC 7V
9	FBP input	This pin is input terminal for FBP to generate pulses for H.AFC2 and horizontal blanking circuits.		
10	SCP output	This pin outputs a Sand Castle Pulse (SCP). The output signal consists of a clamp pulse, horizontal blanking, and vertical blanking. Use $10k\Omega$ for load resistance.		Clamp pulse Horizontal blanking 4.5V Vertical blanking 0V
11	DAC monitor	 (1) Selects a slave address. High : 8AH Low : 88H (2) Can monitor the output voltage of each control DAC. (3) Color control terminal. 	Color control	DC 3V
12	l ² L/H.out GND	This is the ground for the logic and horizontal output circuits.	_	_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
13	SDA	This is a SDA terminal for the I ² C bus. Because its is week for surge inpulse, connect external devices for protection against surge if necessary.		5V 0.4V ACK bit 0V
14	SCL	This is a SCL terminal for the I ² C bus. Because its is week for surge inpulse, connect external devices for protection against surge if necessary.		₀v
15	GND	This is the ground for the sync. and TEXT circuits.	—	—
16 17 18	R output G output B output	These pins are R, G, and B outputs. When using this device in combination with the TA8889P or TA8889AP, turn its blanking mode off.		This level is 2V when blanking is off.
19	TEXT V _{CC}	This is the power supply for the TEXT circuit. Apply 9V (typ.) to this pin.	_	_
21	TV / TEXT	This pin is a switch selecting the R/G/B output signal between TV signal and external TEXT signal. This pin also is a R/G/ B mute switch. Vth : $\frac{5V - \frac{Mute}{TEXT}}{0V - TV}$	21 TV/TEXT SW SW SW SW SW SW SW SW SW	TEXT : 1.5V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
22 23 24	External R input External G input External B input	These are external TEXT input pins. Input R/G/ B signal through a clamping capacitor.	22 23 24 T T T T T T T T T T T T T T T T T T	0.4V _{p-p}
25	ACL	This is an external unicolor control terminal. Use this pin when applying ACL.	25 VCC Unicolor DAC Unicolor Control	DC 2V
26	ΑΡΟ	This pin is for an APC filter for PAL/NTSC demodulation. The voltage at this pin determines the oscillation frequency of VCXO.	26 VCC detection 3000 S S S S S S S S S S S S S S S S S	DC 6.2V
27	SECAM GND	This is the ground for the SECAM demodulator circuit.		_
28	f _{sc} output	 (1) Outputs the oscillation waveform of VCXO. (2) Outputs the signal through the BELL filter if applying 1V to pin 32. 		(1) 4MHz 3MHz (2) 4MHz 3M
29	SECAM f _o	Connect automatic f _o adjusting filter for SECAM PLL demodulation VCO.		DC 7.6V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
30 32	B-Y deemphasis R-Y deemphasis	This pin is for a SECAM deemphasis capacitor. The output of the BELL filter can be monitored at pin 28 by applying 1V to pin 32.	nphasis capacitor. output of the BELL r can be monitored in 28 by applying o pin 32.	
31	SECAM Ident	This pin is for a SECAM Ident filter. Connect a proper value resistance in parallel to prevent mis- identification of color system.	Ident filter. Connect a proper value resistance in parallel to prevent mis- identification of color	
33	SECAM ACC	This pin is for a SECAM ACC filter.		DC 4V
34	BELL f _o	This pin is for an automatic f _O adjusting filter for the BELL filter.	^V CC ^T ^T ^T ^T ^T ^T ^T ^T	DC 6V
35	SECAM input	This pin is for the SECAM chroma signal input. Input the chroma signal through a broadband 4.3MHz BPF to improve the color signal edge shape on the condition of small signal input.		Id ; 100mV _{p-p}
36	SECAM V _{CC}	This is the power supply for the SECAM demodulator circuit.	_	_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
37 38	R-Y input B-Y input	These are input terminals for R-Y and B-Y signals. Input R-Y and B-Y signals through a clamping capacitor.	³⁷ ³⁸ ³⁷ ³⁸	^{0.7V_{p-p} - .6V_{p-p} - - - - - - - - - - - - - - - - - - - }
39	P / N / S identification output	This pin shows the system identification, PAL, SECAM or NTSC. For the black and white identification, this pin keeps the immediate voltage. The voltage at this pin immediately after power -on is indeterminate.		DC PAL 8.3V SECAM 4.6V NTSC 0V
40 41	R-Y output B-Y output	These pins output the R-Y and B-Y signals.		^{0.7V_{p-p} - - 0.6V_{p-p} - - - - - - - - - - - - - - - - - - - }
42 47	NTSC Ident PAL Ident	This pin is for a PAL/ NTSC Ident filter. The color killer sensitivity can be set by connecting resistance in parallel to prevent mis- identification.	42 47 HD detection	DC 6.2V
43 44 45	4.43X'tal M / N X'tal 3.58X'tal	These pins are for crystal resonators. Use the series capacitance to vary the free running frequency, f _o , and the parallel capacitance to vary the frequency control range.	$\begin{array}{c} V_{CC} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	DC 5.7V - 150mV _{p-p}
46	Chroma GND	This is the ground for the PAL/NTSC demodulator circuit.	_	_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
49 51	4.43 chroma input 3.58 chroma input	These pins are the 4.43 /3.58MHz chroma signal inputs. Input the chroma signal through a BPF.	49 51 49 51 49 51 49 51	DC 1.8V Burst 100mV _{p-p}
50	Chroma V _{CC}	This is the power supply for the PAL/NTSC demodulator circuit. Apply 9V (typ.) to this pin.	_	_
52	Y clamp	This pin is for a clamp filter for the video signal circuit.	52 T Clamp Clamp N Clamp N Clamp N Clamp	DC 2V
53	ABL	This is an external brightness control terminal. Use this pin when applying ABL.	53 T T T T T T T T T T T T T	DC 2V
54	ACC	This pin is for a PAL/ NTSC ACC filter.		DC 5.8V
55	FAA	This pin is for a filter of automatic f _o adjustment circuit for the built-in filters. The voltage at this filter determines the sharpness peak frequency, BELL center frequency and SECAM demodulation center frequency.	53	DC 4.5V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
56	Gamma (γ) voltage	The voltage at this pin determines the starting point of γ conpensation for the video signal. This is also a test pin.	Test circuit	DC 5V
57	APL2	The voltage at this pin determines the starting point of black stretching.		DC 3.2V
58	APL1	This pin is for a filter to determine the DC restoration ratio. The black-stretched video signal is appeared at this pin.	V_{CC} APL detection APL detection C C C C C C C C	0.7V _{p-p}
59	Video V _{CC}	This is the power supply for the video circuit. Apply 9V (typ.) to this pin.	_	_
60	Video input	This pin is the video signal input. Input the video signal through a clamping capacitor.		DC 2.9V
61	Black detection	This pin is for a filter to detect the black level of video signal. The voltage at this pin determines the black stretching gain.	61 Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ	DC 2.9V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	TERMINAL SIGNAL
62	Video GND	This is the ground for the video circuit.		_
63	Sync. input	This pin is input for the sync. separation circuit. Input the sync. signal through a clamping capacitor.		DC 3.5V
64	V _p output	This is a vertical pulse output terminal. This pin is also an external vertical blanking input. Blanking is applied after being OR'ed with the internal blanking.	BRANCE CONTRACT OF	$4.5V$ $4.5V$ $V-BLK \rightarrow 0V$

TERMINAL SIGNAL : Standard input/output signals under normal operation.

BUS CONTROL MAP

Write data (Standard slave address 88H)

SUB	MSB	C	F	4	2	2	1	LSB	INITIAL V POWE	
ADDRESS	7	6	5	4	3	2	I	0	MSB	LSB
00	WPL				Color				0100	0000
01	Sharp- ness SW				TINT (for	NTSC only	()		0100	0000
02					Brightness	5			0100	0000
03	P/N GP		Unicolor				0100	0000		
04	Vertica	mode			Sharpness				0010	0000
05	Vertical	phase adj	ustment		Horizonta	l phase a	djustment		0001	0000
06	Mute	mode	BLK	B/W	X'tal	mode	Color	system	0100	0000
07	P / N amplitu- de	SECAM a	mplitude	BELL fil [.]	ter f _o adji	ustment	S GP	S ID	0001	0000
08	SECAM	black leve	el adjustm	ent R-Y	SECAM	black leve	el adjustm	ent B-Y	1000	1000
09	Search	Blue	back	YNR	AFC	Test	mode sele	ction	0000	0000

Read data (Standard slave address 89H)

PONRES Color system	X'tal mode	Vertical F Reserved	
---------------------	------------	---------------------	--

BUS CONTROL FUNCTIONS

 Write function (★ : Initial value at power-on) Color, TINT, brightness, unicolor, sharpness User control. For color, TINT, and unicolor, It is recommended to use 100LSB in 128LSB for user control and 28LSB for subcontrol. Vertical phase adjustment Fine adjust the screen position in the vertical direction. (The variable range is approximately 1.3% of the screen size.) Horizontal phase adjustment Fine adjust the screen position in the horizontal direction. (The variable range is approximately 7.8% of the screen size.) P/N amplitude, SECAM amplitude Adjust these amplitudes if there is any difference in color-difference signal amplitude between PAL/NTSC and SECAM. BELL filter fo Fine adjust the internal BELL filter's fo. Q is fixed. SECAM black level adjustment Adjust the black level (blanking level) of the SECAM color-difference signal. WPL ★ 0 : WPL (White Peak Limiter) on 1: WPL off Sharpness ★ 0 : Sharpness function on SW 1 : Sharpness function off P/N GP ★ 0 : PAL/NTSC gate pulse position, initial value 1 : 0.5 µs delay Vertical mode \star 00 : Vertical frequency automatically identification (312.5H/262.5H) 01 : Reserved (operates in the same way as for 00; V separation level is not sensitive.) 10 : Fixed to 312.5H (without vertical sync pull-in function) 11 : Fixed to 262.5H (without vertical sync pull-in function) Mute mode 00 : Mute off ★ 01 : RGB muted, RGB output voltage 2V (trace period) 10 : Y signal muted (used for adjusting NTSC TINT center) 11 : Y/C muted, Vp output stop, brightness control possible ★ 0 : Blanking on BLK 1 : Blanking off B/W ★ 0 : Color killer is available 1 : Forced monochrome mode X'tal mode \star 00 : Crystal resonator frequency automatic identification mode 01: 4.43MHz fixed mode 10: 3.58MHz fixed mode 11 : M/N crystal fixed mode

	Color system	★ 00 : Color system automatic identification mode
		01 : Color killer operating with PAL ident only
		10 : Color killer operating with NTSC ident only
		11 : Color killer operating with SECAM ident only
	S GP	★ 0 : SECAM gate pulse position, initial value
		$1 : -0.5 \mu s$
	S ID	★ 0 : SECAM identification depends on only H ident signal
		1 : SECAM identification depends on only H and V ident signal
	Search	★ 0 : X'tal identification period is 4 vertical period
		1 : X'tal identification period is 8 vertical period
	Blue back	\star 00 : Blue back off
		01 : All white
		10 : All red
		11 : Blue back on
	YNR	★ 0:YNR off
		1 : YNR on
	AFC	★ 0 : AFC detection current 350 μ A
		1 : AFC detection current $700 \mu A$
•	Read function	'
	PONRES	0 : Read data at the second and following read timing after power-on
		1 : Read data at the first read timing after power-on
	Color system	00 : Monochrome
	-	01 : PAL
		10 : NTSC
		11 : SECAM
	X'tal mode	01 : 4.43MHz X'tal
		10 : 3.58MHz X'tal
		11:M/N X'tal
	Vertical F	0 : Vertical 50Hz
		1 : Vertical 60Hz

COLOR SYSTEM AUTOMATIC IDENTIFICATION MODE SWITCH

Color system automatic identification mode, 4PAL/4NTSC/3NTSC/MN-PAL or 4PAL/4NTSC/3NTSC/SECAM, can be selected. Connecting pin 44 to GND with $2.4k\Omega$ selects the automatic identification mode for 4PAL/4NTSC/3NTSC/SECAM.

4PAL	:	4.43MHz	PAL
4NTSC	:	4.43MHz	NTSC
3NTSC	:	3.58MHz	NTSC

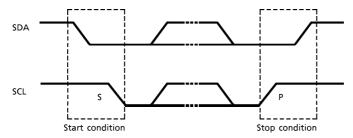
<u>TOSHIBA</u>

DATA TRANSFER FORMAT VIA I²C BUS

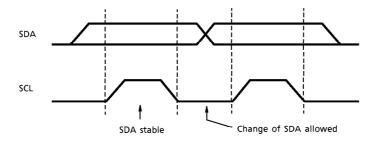
Slave address : Voltage at pin 11 determines the slave address.

If th	ne v	voltage	is	less	than	5V
-------	------	---------	----	------	------	----

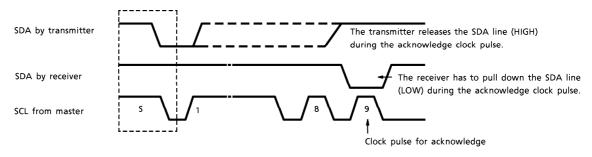
A6	A5	A4	A3	A2	A1	A0	W/R
1	0	0	0	1	0	0	0/1


If the voltage is more than	5V
-----------------------------	----

A6	A5	Α4	A3	A2	A1	A0	W/R
1	0	0	0	1	0	1	0/1


Data transmit format

S	slave address	0	Α	sub address	A	transmit data	Α	Р	
1	† 7bit		t	8bit		🕈 8bit		t	
	MSB			MSB		MSB			
S :	Start condition		Α :	Acknowledge				Ρ:	Stop condition


Start and stop conditions

Bit transfer

Acknowledge

Data receive format

S	slave address	1	Α	receive data	Α	Р
	† 7bit			8bit		
	MSB			MSB		

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

The STOP condition is generated by the master.

Optional data transmit format : Automatic increment mode

S	slave address	0	А	1	sub address	А	transmit dat	ta 1	transmit da	ta n	Α	Р
	† 7bit			f	7bit		1 8bit		8bit			
	MSB			MSB		ſ	VISB		MSB			

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

SPECIAL FUNCTION SWITCH (used to test the device before shipping)

DAC monitor

The voltages of the internal DACs can be monitored at pin 11.

Test mode selection

- ★ 000 : On the condition that voltage at pin 11 is lower than 5V, the slave address is 88H and external color control is available.
 On the condition that voltage at pin 11 is higher than 5V, the slave address is
 - On the condition that voltage at pin 11 is higher than 5V, the slave address is 8AH.
 - 001 : Color DAC
 - 010 : TINT DAC
 - 011 : Sharpness DAC
 - 100 : Horizontal phase adjustment DAC
 - 101 : BELL filter fo adjustment DAC

The voltages of the SECAM adjustment DACs can be monitored on pin 30 and pin 32.

Test mode selection

- 110 : SECAM amplitude adjustment DAC
- 111 : SECAM black level adjustment DAC

Internal pulses monitor of sync.

Some internal pulses in the sync. section can be monitored by applying the designated voltage to pin 1 as shown below.

PULSE NAME	APPLI	MONITOR		
FULSE NAME	0~1.5	PIN		
PN GP	OFF	ON	OFF	64
Video GP	ON	OFF	OFF	04

RGB blanking stops in this test mode.

AFC1 mask stop mode

The AFC1 masking operation can be disabled by connecting pin 1 to GND.

Internal signal monitor in SECAM demodulating section

Internal signals in the SECAM demodulating section can be monitored as shown below.

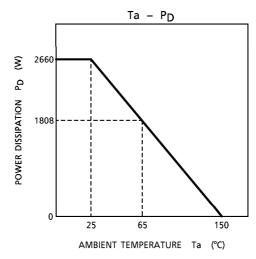
CONDITION	VOL	VOLTAGES APPLIED TO PIN30					
NAME OF	0~2	5.6~6.5	6.5~V _{CC}	OPEN	PIN		
f _o adj. pulse	ON	OFF	OFF	OFF			
ACC key pulse	OFF	ON	OFF	OFF	32		
ID key pulse	OFF	OFF	ON	OFF			

	VOL	VOLTAGES APPLIED TO PIN32						
NAME OF	0~2	7~8	8~V _{CC}	OPEN	PIN			
Permu. stop	OFF	ON	OFF	OFF	30			
All time f _o adj.	OFF	OFF	ON	OFF	50			
Bell monitor	ON	OFF	OFF	OFF	28			

Video section delay line monitor

The characteristics of the internal delay line that is used for sharpness in the video section can be monitored. The characteristics of the internal delay line can be monitored at pin 56 as a trap frequency response.

CONDITION	VOLTAGE APPLIED TO PIN53	OUTPUT PIN
DL Trap	higher than 5.5 V	56


When monitoring, connect pin 56 to GND with 5.1k $\Omega.$

MAXIMUM RATINGS (Ta = 25° C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	15	V
Power Dissipation	P _D max.	2660 (Note 1)	mW
Input Signal Amplitude	e _{in}	5	V _{p-p}
Applied Voltage	Ein	GND – 0.3~V _{CC} + 0.3	V
Operating Temperature	T _{opr}	- 20~65	°C
Storage Temperature	T _{stg}	- 55~150	°C

(Note 1) When using the device at above $Ta = 25^{\circ}C$, decrease the power dissipation by 21.2mW for each increase of 1°C.

(Note 2) Pin 13 and pin 14 are weak against static electricity and surge impulse. If necessary, please take counter measure to meet.

RECOMMENDED OPERATING CONDITION

CHARACTERISTIC	CONDITION	MIN.	TYP.	MAX.	UNIT		
	At pin 19, pin 36, pin 50 and pin 59	8.1	9.0	9.5			
Supply Voltage	At pin 5	8.1	9.0	10.0	V		
	At pin 4	3.0	3.3	3.6			
Video Input Signal Level	Composite video signal amplitude	0.7	1.0	1.2	Vp-p		
Chroma Innut Signal Loval	PAL/NTSC chroma input	100	200	300	m)/		
Chroma Input Signal Level	SECAM chroma input	50	100	150	mVp-p		
Sync Input Signal Level	Composite video signal amplitude	1.0	2.0	2.5	Vp-p		
Text Input Signal Level	_	0.5	0.7	1.0	Vp-p		
FBP Width	_	11	12	13	μs		
FBP Input Current	_	0.3	1.0	1.3	mA		
RGB Output Current	_		1.0	2.0	mA		
H.out Output Current	_	—	3.0	5.0	mA		
V _p Output Current	-	—	1.0	2.0	mA		

ELECTRICAL CHARACTERISTICS

'Unless otherwise specified, $V_{CC} = 9V$, logic $V_{CC} = 3.3V$, and $Ta = 25^{\circ}C$, the data of each sub-address is the device's switch-on default values except the following : Sub-address 06H : data 00H

DC CHARACTERISTICS

CHARACTERISTIC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	1	Logic V _{CC} (pin 4) 3.3V	10	20	28	
	1	Video/chroma V _{CC} turned off	15	30	40	
	1	H.V _{CC} (pin 5) 9V	10	20	28	
Supply Current	1	Video/chroma V _{CC} turned off	15	30	40	A
Supply Current	1	TEXT section V _{CC} (pin 19) 9V	15	31	44	mA
	1	SECAM section V _{CC} (pin 36) 9V	10	18	25	
	1	Chroma section V _{CC} (pin 50) 9V	12	27	38	
	1	Video section V _{CC} (pin 59) 9V	17	37	52	
	1	Pin 2	7.2	7.4	7.8	
	1	Pin 16, pin 17 and pin 18 (In mute mode)	1.7	2.0	2.3	
Terminal Voltage	1	Pin 22, pin 23 and pin 24 (Unicolor dac center)	3.3	3.8	4.2	V
	1	Pin 63 (Apply 5V with 5.1k Ω resister, measure DC output voltage at trace period.)	3.1	3.5	3.9	

AC CHARACTERISTICS

Video section

CHARACTERISTIC		TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Range	Upper	1	Measure dynamic range above the pedestal level	0.7	1.0	1.3	V
	Lower	•	Measure dynamic range below the pedestal level	0	0.3	0.5	V _{p-p}
Y Input Impedance		1	Measure input impedance of pin 60	100	130	_	kΩ
Y Input Clamp Voltage	è	1	Measure DC voltage at pin 60 when Y input connected to AC GND	2.5	2.8	3.1	v
Maximum Y Gain		1	Note 1	15	17.5	23	dB
Y Frequency Bandwidt	h	1	Note 2	8	10	15	MHz
Black Stretching Amp Maximum Gain		1	Note 3	1.3	1.4	1.5	—
Black Stretching Start I	Point	1	Note 4	40	50	65	IRE
DC Restoration Ratio		1	Note 5	97	100	103	%
Black Stretching Start Voltage		1	Note 6	3.2	3.3	3.6	v
Delay Time Of Sharpne Circuit	255	1	Measure difference in Y output signal delay time between sharpness SW turned on and off	115	125	135	ns

CHARA	ACTERISTIC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Maximum Gain		(1) Input 2T pulse VBS to TP60 and TP63.	3.5	5.5	7.5	
Sharpness Control	Center Gain	1	(2) Measure 2T pulse output gain of data = 3FH, 20H, and 00H. 0dB is	0.5	1.5	3.5	dB
	Minimum Gair		equal to the output gain of sharpness SW off.	- 3	– 1	1	
YNR Gain	YNR Gain		Note 7	- 20	– 13	- 8	dB
Contrast	Center Gain	_ 1	Measure Y output gain of data = 40H	- 4	- 5.5	- 7	dB
Control	Minimum Gair		and 00H. Maximum Y gain is 0dB.	- 17	– 19	- 21	uв
γ Point	Va	1		40	50	60	IRE
y Font	Vb		Note 8	80	90	100	INL
γ Gain	Gain Ga			– 1	- 3	– 5	dB
	Gain Gb			- 4	- 6	- 8	ub
Y S/N Ratio		1	Note 9	50	55	60	dB

Chroma section 1 (PAL/NTSC)

CHARA	CTERIS	TIC		TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ACC Output Characteristic			e300	1	Input rainbow signal whose burst and chroma signal level is 300mV _{p-p}	260	370	520	
			e100		and 100mV _{p-p} . Measure signal amplitude at pin 41.	260	370	520	mV _{p-p}
ACC Flatness				1	e300 / e100	0.9	1.0	1.1	_
Killer on Love	J		PAL	1	Input color bar signal. Measure burst amplitude at which	0.2	0.5	1.0	m)/
Killer-on Leve	ller-on Level		NTSC		color begins to disappear when burst is gradually reduced.	0.2	0.5	1.0	mV _{p-p}
Killer-off Leve			PAL	1	Input color bar signal. Measure burst amplitude at which	1.0	2.5	4.0	
Killer-Oll Leve	21		NTSC	1	color begins to be tinted when burst is gradually increased from 0.	1.0	2.5	4.0	mV _{p-p}
	3.58N		High	1		300	500	1000	Hz
	3.301		Low		f _o = 3.579545MHz	- 300	- 500	- 1000	пг
APC Pull-in	4.43N	111-	High	1	f _ 4 422610MHz	300	500	1000	Hz
Range	4.451		Low		f _o = 4.433619MHz	- 300	- 500	– 1000	пг
	М РА		High	1	f _O = 3.575611MHz	300	500	1000	Hz
		L [Low		$1_0 = 3.37301101Hz$	- 300	- 500	– 1000	112
		4.43	BMHz		(1) Fix X'tal mode with bus.	1.7	2.4	3.2	
			BMHz	1	(2) Measure frequency changes at TP28 when varying TP26 voltage	1.5	2.2	3.0	Hz/mV
	,	ΜP	PAL		from 6.2V to 6.3V.	1.8	2.5	3.3	

CHARAC	TERISTI	с	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
f _{sc} Output	4	.43MHz	1	(1) Fix X'tal mode with bus.	130	150	170	m\/
Amplitude	3	.58MHz	'	(2) Measure signal amplitude at TP28.	120	140	160	mV _{p-p}
f Output Valt	4	.43MHz	1	(1) Fix X'tal mode with bus.	3.6	3.9	4.2	v
f _{sc} Output Volt	age 3	.58MHz	'	(2) Measure DC voltage at TP28.	2.8	3.1	3.4	v
B V Output Am	Y Output Amplitude 4PAL		1	Input rainbow signal. Measure signal	260	370	520	m\/
	ipiitude	3NTSC	'	amplitude at pin 41.	260	370	520	mV _{p-p}
R-Y Output Am	un lituda	4PAL	1	Input rainbow signal. Measure signal	220	315	440	m)/
	ipiitude	3NTSC	'	amplitude at pin 40.	220	315	440	mV _{p-p}
Relative Amplit	uda	4PAL	1	Input rainbow signal.	0.73	0.8	0.90	
Relative Amplit	uue	3NTSC	'	Measure (R-Y)/(B-Y)	0.73	0.8	0.90	
Rolativa Phaca	4PAL	/ 4NTSC	1	Input rainbow signal.	85	90	95	0
Relative Phase 3NTSC		С	'	Measure θ (R-Y) – θ (B-Y)	85	90	95	
Chroma Demod Bandwidth	lulation	l	1	Note 10	0.5	0.8	1.5	MHz
		B-Y		Measure residual carrier waves (f _{sc}	0	3	5	
Residual Carrier	r Level	R-Y	1	frequencies) on pin 40 and pin 41.	0	3	5	mV _{p-p}
Residual Harmo	nics Le	B-Y	1	Measure residual higher harmonics (double the f _{sc} frequency) on pin 40	0	20	30	- mV _{p-p}
	Jines Le	R-Y		and pin 41.	0	20	30	пор-р
Т	ΓΙΝΤ Μά	aximum		(1) Input NTSC rainbow signal.(2) Measure TINT of data = 00H, 40H,	27	32	39	
TINT Control	TINT Ce	nter	1	and 7FH.	- 12	- 4	8	o
Т	TINT Minimum			(3) TINT 0° is when the 6th bar of B- Y is maximum.	- 39	- 44	- 49	
PAL/NTSC Colo Amplitude Adju			1	Note 11	- 2	- 1	- 0.5	dB
	A.N.4	PAL			8.0	8.3	8.6	
PAL/NTSC/SEC		SECAM	1	Measure output voltage from pin 39.	4.3	4.6	4.9	V
Identification O	Juiput	NTSC]		0.0	0.1	0.4	

Chroma section 2 (SECAM)

CHARACTERISTIC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Color System Identification Mode Switch Threshold Voltage	1	Measure voltage at pin 44 at which SECAM signal becomes unable to be demodulated when the DC voltage applied to TP44 is varied from 6V to 0V.	4.7	5.0	5.3	v

<u>TOSHIBA</u>

CHARAC	TERISTIC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ACC Int	out Id 150mV _{p-p}		$(1) V_{32} = 1V$	220	280	340	
Characteris-	out Id 50mV _{p-p}	1	(2) Measure ident amplitude at pin 28.	220	280	340	mV _{p-p}
Killer-on Level	Ident Data = 0	1	Input color barsignal. Measure burst amplitude at which	0.1	1	3	m\/
	ldent Data = 1		color begins to disappear when burst is gradually reduced.	0.1	1	3	mV _{p-p}
B-Y Output Ar	nplitude	1	Input color bar signal. Measure output amplitude at pin 41.	400	580	750	mV _{p-p}
R-Y Output Amplitude		1	Input color bar signal. Measure output amplitude at pin 40.	450	680	950	mV _{p-p}
BELL Monitor Threshold Volt		1	Note 12	1.5	1.8	2.1	v
BELL Filter	Ident Ratio		Note 13	0.9	1.0	1.1	
Characteristic	Cyan Bar] 1		1.00	1.15	1.30	—
Characteristic	Yellow Bar			1.10	1.25	1.40	
BELL Filter fo	Control Range	1	Data = 07	70	105	140	kHz
BEEF Intel 10	control hange		Data = 00	- 175	- 140	– 105	KI1Z
PLL Pull-in Rar		1	High	4.75	5	5.5	MHz
	ige		Low	3	3.7	3.9	101112
Black Level Of	fset Voltage			- 15	0	15	
Black Level Of	fset Maximum	1	Note 14	19	24	29	mV
Adjustment	Minimum			- 31	- 28	- 25	
				- 1.0	- 1.8	- 2.5	
SECAM Color I	Difference	1	Note 15	- 2	– 1	- 0.5	_ dB
Amplitude Adj	ustment Gain	'		- 0.5	0	0.5	
				0.5	1	1.5	

TEXT / Matrix section

CHARACTERISTIC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
RGB Maximum Output	1	Measure maximum output voltage from pin 16 when WPL is off.	7.3	7.7	8.8	V
Color Difference Input Dynamic Range	1	Measure input dynamic range at pin 37 and pin 38.	1.6	2.0	2.3	V _{p-p}
Relative Amplitude	1	Input PAL rainbow signal. Measure G/B in the color difference output mode selected by bus on RGB output pins.	0.31	0.37	0.42	-
Relative Phase	1	Input PAL rainbow signal. Measure θ (G) – θ (B) in the color difference output mode selected by bus on RGB output pins.	230	237	245	o

CHARA	CTERISTIC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Maximum Gain			18	19.5	21	
	Center Gain			- 9	- 7	- 5	dB
Colon Control	Minimum Gain			- 80	- 50	- 40	
Color Control Characteristic	Maximum Gain Voltage	1	Note 16	3.2	3.5	3.8	v
	Minimum Gain Voltage			2.2	2.5	2.8	v
_	Maximum Gain Minimum Gain			3.5 - 16	5 - 14	6.5 - 12	dB
Contrast Control Characteristic	Maximum Gain Voltage	1	Note 17	2.2	2.5	2.8	v
Characteristic	Minimum Gain Voltage			1.2	1.5	1.8	v
	Maximum Voltage		 (1) No Y input. (AC GND) (2) Data = FFH. Measure DC voltage at voltage 10 during tages partial. 	3.2	3.5	3.8	
Brightness	Center Voltage	1	pin 18 during trace period. (3) Data = 80H. Measure DC voltage at pin 18 during trace period.	1.8	2.0	2.2	v
Control Minimum Characteristic Voltage			(4) Data = 00H. Measur DC voltage at pin 18 during trace period.	0.2	0.5	0.8	
	Control Voltage (1)	1	Measure DC voltage at pin 18 during trace period when $V_{53} = 1V$.	0.7	1.0	1.3	V
	Control Voltage (2)	I	Measure DC voltage at pin 18 during trace period when $V_{53} = 3V$.	2.7	3.0	3.3	v
Brightness Tra	cking	1	Measure DC voltage difference between R, G and B outputs of brightness data = 40H.	- 0.2	0	0.2	V
WPL Voltage		1	Measure maximum output voltage from pin 18 when WPL is on.	5.7	6.0	6.3	v
Blanking Outp	out Voltage	1	Measure output voltage from pin 18 during blanking period.	0.3	0.5	0.8	~
Vertical Blank Period	ing 50Hz 60Hz	1	Measure vertical blanking period width.		23 18		Н
Horizontal Bla Threshold Vol	-	1	Measure lowest voltage at pin 9 which causes horizontal blanking.	0.5	0.7	1.0	V
Horizontal Bla Time	-	1	Measure blanking-on delay time. Measure blanking-off delay time.	0.0 0.1	0.1 0.3	0.3 0.5	μs
	king Threshold	1	Measure minimum input current to pin 64 which causes blanking.	300	330	400	μA
Mute Output	Voltage			1.7	2.0	2.3	
Mute Switch T Voltage	-	1	Note 18	4.7	5.0	5.3	V

CHARAG	CTERIST	IC	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
External TEXT Range	Input [Dynamic	1	Measure input dynamic range on pin 22, pin 23 and pin 24.	1.0	1.5		V _{p-p}
External TEXT	Maxim Gain	um		(1) Input signal 3 (V _{im} = 0.1V _{p-p}) to TP24.	15	16	18	
Contrast Control	External TEXT Contrast Center Gain	Gain	1	(2) Measure output amplitude at pin18 when data = 7FH, 40H, and	12	13.5	15	dB
м	Minim	um Gain		00H as V ₁₈ . (3) Gain = 20ℓog (V ₁₈ / 0.1)	- 7	- 4	- 2	
External TEXT	xternal TEXT Rising Time				10	25	50	
External TEXT	Falling	Time		(1) Load capacitance is 10pF.	10	25	50	
External TEXT Time	Output	t Delay	1	(2) Adjust contrast data so that RGB	10	25	50	ns
External TEXT Delay Time	Switchi	ing		output amplitude is 1V _{p-p} .	10	25	50	
TV/TEXT Swit	ching V	'oltage	1	Note 19	0.7	1.0	1.3	V
Crosstalk	T۱	/→TEXT	1	Note 20	- 45	- 55	_	dB
Crosstalk	TE	XT→TV		Note 21	- 45	- 55	—	ав
External TEXT	External TEXT Bandwidth		1	Note 22	12	15	20	MHz
		Output		(1) Select all-white mode by bus.	3.6	3.8	4.0	
All White Mode Output Voltage	- G	Output	1	(2) Measure R, G, and B amplitudes	3.5	3.7	3.9	V _{p-p}
		Output		during trace period.	3.6	3.8	4.0	

Sync. section

CHARACTERISTIC		TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Horizontal Sync. Separation Level		1	Note 23	30	35	40	%
Sync. Separation Input Sensitivity		1	Note 24	10	18	25	μΑ
Horizontal Free Running Frequency		1	Measure H.out frequency when no sync. input and no FBP input.	15.50	15.62	15.75	kHz
IAFC1 Pull-in Range 🛛 🛏	High Low	1	Center frequency is f _H = 15.625Hz	500 - 500	750 - 750	1000 - 1000	Hz
Horizontal Oscillation Frequency Control Range		1	Note 25	14.70	15.62	16.90	Hz
Horizontal Oscillation Frequency Control Sensitivity		1	Note 26	2.0	2.3	2.6	kHz / V
AFC1 Detection Current		1	Note 27	250	350	450	μA

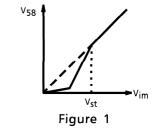
<u>TOSHIBA</u>

СН	IARACTERISTIC		TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
AFC1 Sto	p Period	50Hz 60Hz	1	Observe pin 2 to measure the period while AFC1 does not operate.		308~6 258~6		н
Horizontal Oscillation Starting Voltage		1	Note 28	3.5	4.0	4.5	V	
Horizontal Output Starting Voltage				4.0	4.5	5.0		
Horizontal Output Duty Cycle		1	Measure duty cycle = (High period) / (1H period) at pin 6.	38	41	44	%	
Horizonta	al Output	High	1	Measure high voltage at pin 6.	4.7	5.0	5.3	v
Voltage		Low		Measure low voltage at pin 6.		0	0.3	v
AFC2 Cor	ntrol Range		1	Note 29	14	15	16	μ s
Horizontal Phase Adjustment Range		1	Note 30	± 2.0	± 2.5	± 3.0	μs	
Vertical Free Running Frequency		1	Measure output frequency at pin 64 when no sync. signal input.	_	50 / 60	_	Hz	
Vertical Pull-in Range		1	Note 31	240.5	_	352	н	
Vertical 60Hz Identification Range				240.5	_	288		
Vertical Pulse Output High		+	Measure high voltage at pin 64	4.2	4.5	4.8		
Voltage			1	Measure low voltage at pin 64		0	0.3	- V
Vertical Blanking Pulse Output Voltage		1	Measure middle voltage at pin 64	2.7	3.0	3.3	V	
Vertical Output Delay 50Hz Time 60Hz		1	Note 32	4.25 0.25	4.75 0.75	5.25 1.25	н	
Vertical Output Phase Variable Range		1	Sync. input 60Hz, data = 000, 111	0		7	н	
SCP Output Voltage	Clamp Gate Pu Period	ulse	1	Note 33	7.3	7.5	7.8	v
	Horizontal Bla Period	nking			4.2	4.5	4.8	
	Vertical Blanki Period	ng			2.2	2.5	2.8	
Voltage		High	1	(1) Sink current into pin 9 is kept at0.1mA when measured.	1.1	1.5	1.8	1.8 0.3
		Low		(2) Measure high and low voltages at pin 9.	_	0	0.3	
Gate Pulse Width		1	Note 33	1.8	2.0	2.2	μs	

CHARACTERISTIC		TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Pulse Phase	Sync. Signal Input PAL Gate 0	1					
	PAL Gate 1			-			μs
	SECAM Gate 0						
	SECAM Gate 1						

TEST CONDITION

Note 1. Maximum Y gain


- (1) Input signal 1 ($f_0 = 100 \text{ kHz}$, $V_{\text{im}} = 0.3 V_{p-p}$) to TP60 and TP63.
- (2) Contrast data = 7FH. $V_{56} = 5V$.
- (3) Measure picture signal amplitude at pin $18. \rightarrow V_{18}$.
- (4) Maximum Y gain = $20\ell og (V_{18}/0.3)$.

Note 2. Y frequency band width

- (1) Input signal 1 ($V_{im} = 0.3V_{p-p}$) to TP60 and TP63.
- (2) Measure picture signal amplitude at pin 18 when $f_0 = 100 \text{kHz}$. $\rightarrow V_{18}$.
- (3) Find the value of f_0 at which the picture amplitude at pin 18 becomes 3dB of V₁₈ when f_0 is varied from 100kHz to 15MHz.
- Note 3. Black stretching amplifier maximum gain
 - (1) Input signal 1 ($f_0 = 500$ kHz, $V_{im} = 0.1V_{p-p}$) to TP60 and TP63.
 - (2) $V_{57} = 3.2V, V_{61} = 2V.$
 - (3) Measure picture signal amplitude at pin $58 \rightarrow V_{58}$.
 - (4) Black stretching amplifier maximum gain = $V_{58}/0.1$.

Note 4. Black stretching start point

- (1) Input signal 2 to TP60 and TP63.
- (2) $V_{57} = 3.15V.$
- (3) Measure picture signal amplitude at pin 58 while varying V_{im} from 0IRE to 100IRE. \rightarrow V58.
- (4) Obtain V_{st} as the figure 1.
- Note 5. DC restoration ratio
 - (1) Keep pin 58 open. 58—□
 - (2) Input APL = 10%, 90% ramp waveforms to TP60 and TP63.
 - (3) $V_{57} = 2.1V.$
 - (4) Measure pedestal level DC voltage at pin 18 difference between APL = 10% and 90%. $\rightarrow \Delta V$.
 - (5) Measure output signal picture amplitude on pin $18. \rightarrow V_{im}$.
 - (6) DC restoration ratio = $(V_{im} \Delta V \times 1.25) / V_{im}$

<u>TOSHIBA</u>

Note 6. Black stretching start voltage

- (1) Input signal 1 ($f_0 = 100 \text{ kHz}$, $V_{\text{im}} = 0.3 V_{p-p}$) to TP60 and TP63.
- (2) Measure the voltage at pin 61 which causes the output signal amplitude at pin 18 to be bigger than output signal when $V_{61} = 4V$, while varying the voltage at pin 61 from 4V to 2.5V.

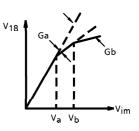
Note 7. YNR gain

- (1) Input signal 1 ($f_0 = 2.5MHz$, $V_{im} = 50mV_{p-p}$) to TP60 and TP63.
- (2) Measure output amplitude ratio at pin 18 when turning YNR on and off.

Note 8. γ point/ γ gain

- (1) Input signal 2 to TP60 and TP63.
- (2) $V_{56} = 3.5V, V_{57} = 2.1V.$
- (3) Measure picture signal amplitude at pin 18 while varying V_{im} from 0IRE to 100IRE. \rightarrow V₁₈.
- (4) Find and calculate V_a, V_b, Ga and Gb.

Note 9. Y S/N ratio


- (1) Input signal 2 to TP60 and TP63.
- (2) $V_{56} = 3.5V, V_{57} = 2.1V, V_{61} = 3.5V.$
- (3) Measure picture signal amplitude at pin 18 when $V_{im} = 0$ and $100IRE. \rightarrow V_0$, V_{100} .
- (4) $S/N \text{ ratio} = 20 \ell \text{og} (V_{100}/V_0)$.

Note 10. Chroma demodulation bandwidth

- (1) Input signal 2 to TP63.
- (2) Input CW signal with frequency fo to TP51.
- (3) $V_{42} = 6.8V$, $V_{26} = 6.2V$; set X'tal mode to 3.58MHz and set color mode to NTSC by bus.
- (4) Measure output amplitude at pin 41 when f_0 is 3.579545MHz + 1kHz. $\rightarrow V_{41}$.
- (5) Find the value of f_0 at which the picture amplitude at pin 41 becomes 3dB of V₄₁ when f_0 is varied from 3.579545MHz + 100kHz to + 2MHz.

Note 11. PAL/NTSC color difference amplitude adjustment gain

- (1) Input rainbow signal to TP63, TP51, and TP49.
- (2) Measure output amplitude at pin 41 when data = $0.\rightarrow V_0$.
- (3) Measure output amplitude at pin 41 when data = $1.\rightarrow V_1$.
- (4) Adjustment gain = $20\ell \text{og} (V_1 / V_0)$.

Note 12. BELL monitor switch threshold voltage

- (1) Input SECAM color bar signal to TP63, TP60 and TP49.
- (2) Apply DC voltage to pin 32. \rightarrow V₃₂.
- (3) Measure the voltage at which output from pin 28 changes into BELL filter output while V_{32} is varied from 3V to 1V.

Note 13. BELL filter characteristic

- (1) Input SECAM color bar signal to TP63, TP60 and TP49.
- (2) $V_{32} = 1V$
- (3) Measure the following amplitude ratios at pin 28 :
 - (R-Y line Ident) / (B-Y line Ident) amplitude ratio
 - (Cyan bar of R-Y) / Ident amplitude ratio
 - (Yellow bar of B-Y)/Ident amplitude ratio

Note 14. Black level offset voltage, black level offset adjustment

- (1) Input SECAM black signal (with Ident and chroma signal) to TP63, TP60 and TP49.
- (2) Black level adjustment data = 88H.
- (3) Measure voltage difference between blanking and trace period at pin 40 and pin 41. →Black level offset voltage.
- (4) Measure voltage changes during trace period when black level adjustment data is varied from 88H to 00H and FFH→Black level offset adjustment.

Note 15. SECAM color difference amplitude adjustment gain

- (1) Input rainbow signal to TP63, TP60 and TP49.
- (2) Measure output amplitude at pin 41 when data = $10.\rightarrow 0$ dB.
- (3) Measure output amplitude at pin 41 when data = 00, 01 and 11. Compare with the measurement when data = 00.

Note 16. Color control characteristic

- (1) Input signal 3 ($f_0 = 100$ kHz, $V_{im} = 0.1V_{p-p}$) to TP38 and signal 2 ($V_{im} = 100$ IRE) to TP63.
- (2) Contrast data = 40H.
- (3) Color data = 7FH.
- (4) Measure output amplitude at pin $18 \rightarrow V_{18}$.
- (5) Maximum gain = $20\ell \text{og}(V_{18}/0.1)$.

- Measure output amplitude at pin 18 when color data = 40H and 00H.
 Compare with the maximum gain (= 0dB).
- (7) Apply DC voltage to TP11. \rightarrow V₁₁.
- (8) Measure the minimum voltage of V_{11} at which the output amplitude of pin 18 becomes maximum while V_{11} is varied from 3V to 5V.
- (9) Measure the maximum voltage of V_{11} at which the output amplitude of pin 18 becomes minimum while V_{11} is varied from 3V to 0V.

Note 17. Contrast control characteristic

- (1) Input Signal 3 ($f_0 = 100$ kHz, $V_c = 0.1V_{p-p}$) to TP38 and signal 2 ($V_{im} = 100$ IRE) to TP63.
- (2) Color data = 40H.
- (3) Contrast data = 40H. Measure output amplitude at pin $18. \rightarrow V_{18}$.
- (4) Contrast data = 7FH. Measure output amplitude at pin $18. \rightarrow V_{18}'$.
- (5) Maximum gain = $20\ell \text{og} (V_{18}' / V_{18})$.
- (6) Contrast data = 00H. Measure output amplitude at pin $18. \rightarrow V_{18}''$.
- (7) Minimum gain = $20\ell og (V_{18}'' / V_{18})$.
- (8) Apply DC voltage to TP25. \rightarrow V₂₅.
- (9) Measure the minimum voltage of V_{25} at which the output amplitude on pin 18 becomes maximum while V_{25} is varied from 2V to 4V.
- (10) Measure the maximum voltage of V_{25} at which the output amplitude on pin 18 becomes minimum while V_{25} is varied from 2V to 0V.

Note 18. Mute output voltage, mute switch threshold voltage

- (1) Input signal 2 ($V_{im} = 100$ IRE) to TP63.
- (2) Apply DC voltage to TP21. \rightarrow V₂₁.
- (3) $V_{21} = 5.5V$
- (4) Measure DC output voltage at pin 18 during trace period \rightarrow Mute Output Voltage.
- (5) Measure the voltage of V_{21} at which the trace period at pin 18 is muted while V_{21} is varied from 4V to 6V.

Note 19. TV/TEXT switching voltage

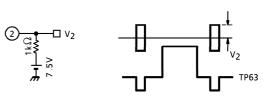
- (1) Input signal 2 ($V_{im} = 100$ IRE) to TP63.
- (2) Apply DC voltage to TP21. \rightarrow V₂₁.
- (3) Measure the voltage of V_{21} at which output from pin 18 is changed from TEXT input to TV input while V_{21} is varied from 2V to 0V.

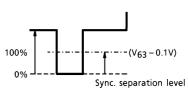
Note 20. Crosstalk (TV→TEXT)

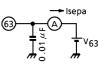
- (1) Input signal 1 ($V_{im} = 0.3V_{p-p}$) to TP60 and TP63. Connect TP22, TP23 and TP24 to AC GND.
- (2) Contrast data = 7FH, Brightness data = 80H, Sharpness SW-Off.
- (3) Connect TP21 to GND. Measure picture amplitude during trace period at TP18 when $f_0 = 1MHz \rightarrow V_{18}$.
- (4) Apply TP21 to 1.5V. Measure picture amplitude at TP18 \rightarrow V_{18'}.
- (5) Crosstalk [dB] = $20\ell \text{og} (V_{18}/V_{18'})$.
- Note 21. Crosstalk (TEXT→TV)
 - (1) Input signal 1 ($V_{im} = 0.3V_{p-p}$) to TP63, TP22, TP23 and TP24. Connect TP60 to AC GND.
 - (2) Contrast data = 7FH, Brightness data = 80H.
 - (3) Connect TP21 to 1.5V. Measure picture amplitude during trace period at TP18 when $f_0 = 1MHz \rightarrow V_{18}$.
 - (4) Connect TP21 to GND. Measure picture amplitude at TP18 \rightarrow V_{18'}.
 - (5) Crosstalk [dB] = $20\ell \text{og} (V_{18} / V_{18'})$.
- Note 22. External TEXT bandwidth
 - (1) Input signal 2 ($V_{im} = 100$ IRE) to TP63 and signal 3 ($V_{im} = 0.3V_{p-p}$) to TP24.
 - (2) Measure picture signal amplitude at pin 18 when $f_0 = 100 \text{kHz}$. $\rightarrow V_{18}$.
 - (3) Find the value of f_0 at which the picture signal amplitude at pin 18 becomes 3dB of V₁₈ while f_0 is varied from 100kHz to 15MHz.
- Note 23. Horizontal Sync. separation level
 - (1) Connect TP63 to AC GND.
 - (2) Measure DC voltage at pin 63. \rightarrow V₆₃.
 - (3) Input signal 2 (V = $2V_{p-p}$) to TP63.
 - (4) Measure the level at which the DC voltage ($V_{63} 0.1V$) crosses the waveform of pin 63 relative to sync. tip (=0%).
- Note 24. Sync. separation input sensitivity

Measure the value of Isepa when the output frequency of pin 64 changes, while V_{63} is varied from 4V to 1V.

Note 25. Horizontal oscillation frequency control range


- (1) Apply DC voltage to TP2. \rightarrow V₂.
- (2) Measure the output frequencies at pin 6, when V_2 is 8.5V, 7.5V and 6.5V.


Note 26. Horizontal oscillation frequency control sensitivity


(1) Apply DC voltage to TP2. \rightarrow V₂.

(2) Measure changes in output frequency at pin 6 when varying V_2 from 7.6V to 7.7V.

- Note 27. AFC1 detection current
 - (1) Input signal 2 ($V = 2V_{p-p}$) to TP63.
 - (2) Observe waveform at pin 2 and measure V_2 .
 - (3) Detection current = $V_2 / 1k\Omega$.

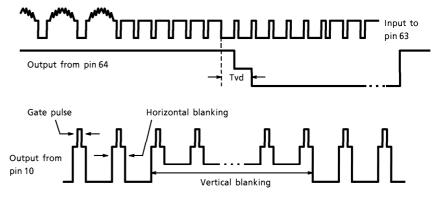
Note 28. Horizontal oscillation starting voltage, horizontal output starting voltage

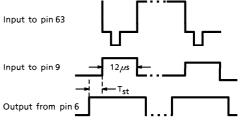
- (1) Measure the value of $H.V_{CC}$ at which oscillation waveform can be observed at TP3 when varying $H.V_{CC}$ from 0V to 9V. \rightarrow Horizontal Oscillation Starting Voltage.
- (2) Measure the value of H.V_{CC} at which horizontal output can be observed at pin 6 when increasing H.V_{CC} higher.→Horizontal Output Starting Voltage.

Note 29. AFC2 control range

- (1) Input signal 2 ($V_{im} = 100$ IRE) to TP63.
- (2) Adjust the width of FBP from the FBP generator (Unit2) to be $12 \mu s$.
- (3) Measure the value of T_{st} at which the phase relationship begins to be not sycronous while varying T_{st} from $10 \mu s$ to $17 \mu s$ from the FBP generator.

Note 30. Horizontal phase adjustment

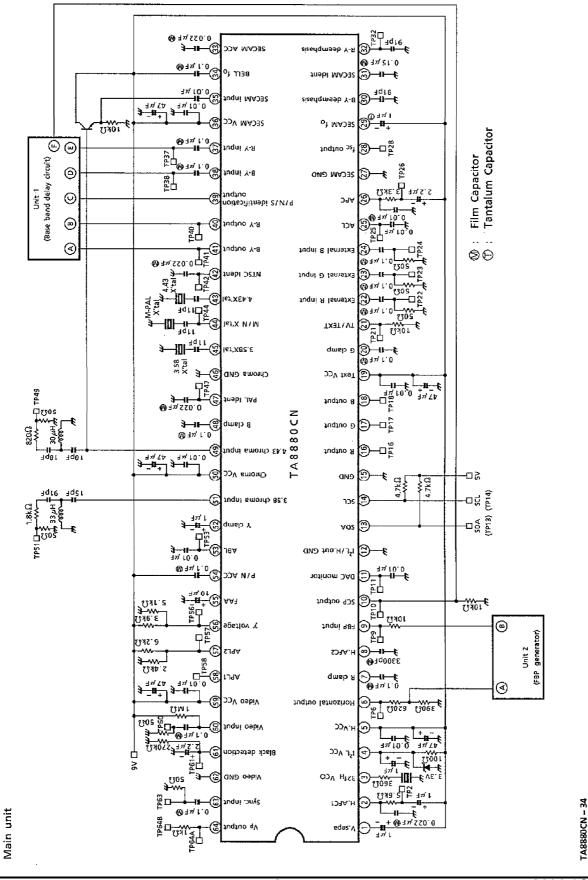

- (1) Input signal 2 ($V_{im} = 100IRE$) to TP63.
- (2) Adjust the FBP width to be 12μ s from the FBP generator.
- (3) Adjust the T_{st} to be $8\mu s$ from the FBP generator.
- (4) Measure phase changes of data = 1FH and 00H relative to the phase relationship of data = 10H.


Note 31. Vertical pull-in range, vertical 60Hz identification range

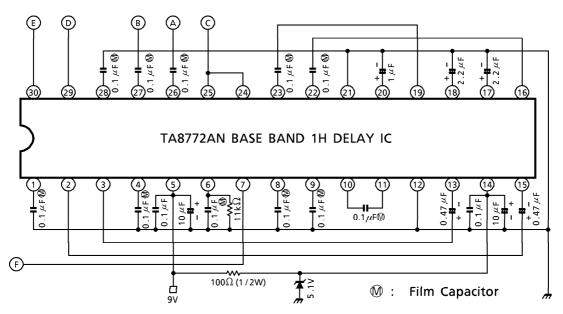
- (1) Input signal 2 ($V = 2V_{p-p}$) to TP63.
- (2) Measure the range of vertical frequencies where synchronization between the input signal and the TP64 output can be achieved while varying the vertical frequency from 40Hz to 70Hz.
- (3) Measure the vertical frequency range where 60Hz is identified against other frequencies by reading the bus during measurement in (2) above.

Note 32. Vertical output delay time

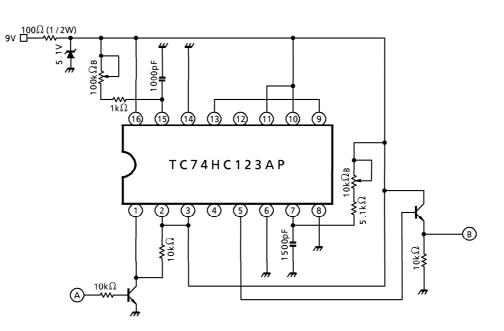
- (1) Input Signal 2 (V = $2V_{p-p}$) to TP63.
- (2) Vertical phase data = 000.
- (3) Measure the Tvd.
- Note 33. SCP output voltage, gate pulse width



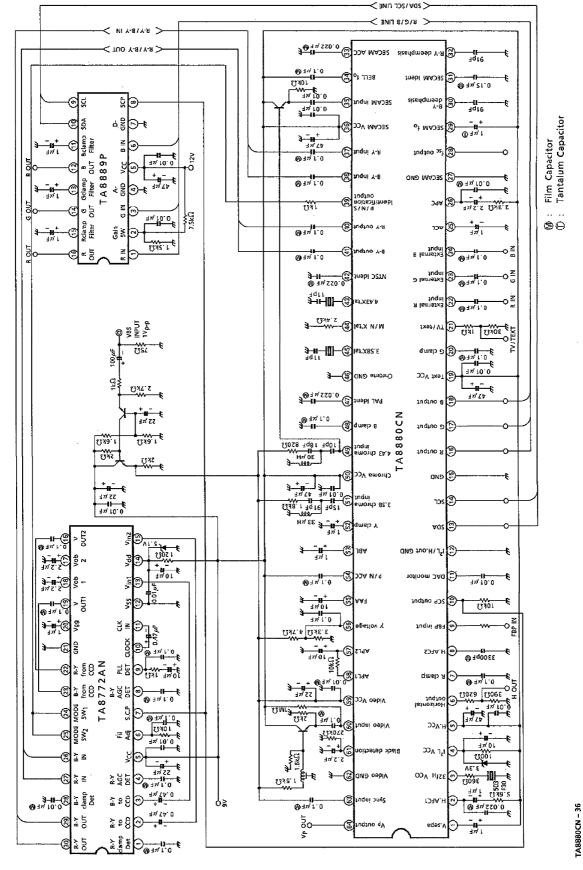
TEST SIGNALS



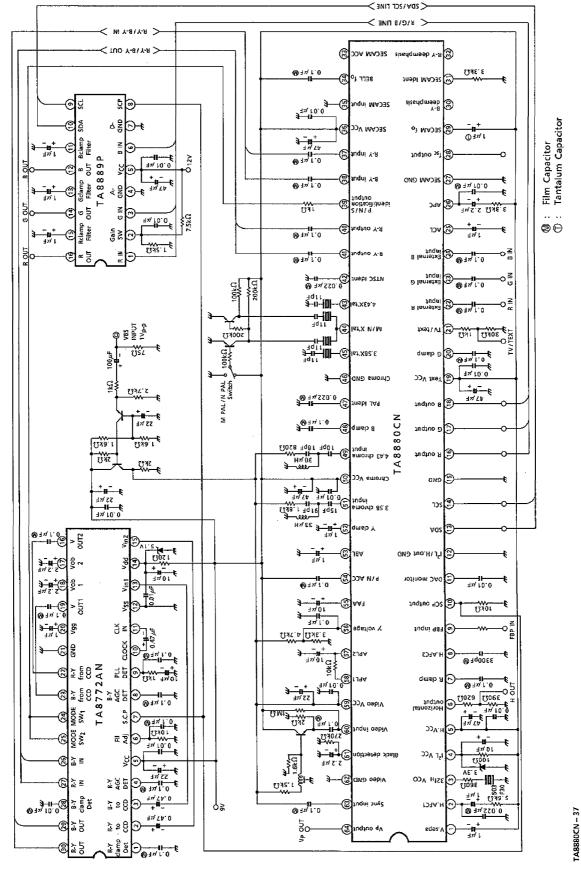
TEST CIRCUIT 1


TEST CIRCUIT 2

Unit 1 (Base band delay circuit)

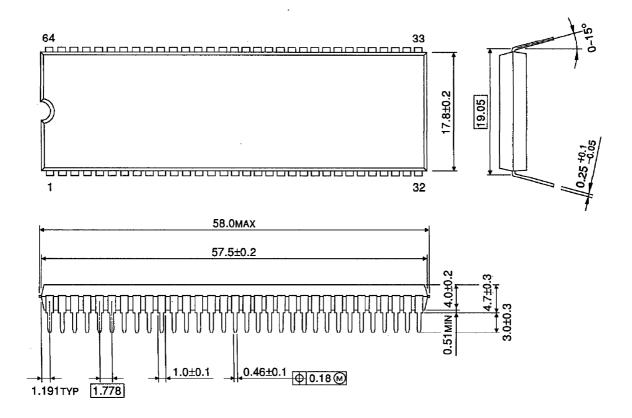


TEST CIRCUIT 3


Unit 2 (FBP generator)

APPLICATION EXAMPLE CIRCUIT 1 (FOR PAL/NTSC/SECAM)

2001-06-25



APPLICATION EXAMPLE CIRCUIT 2 (FOR NTSC/M PAL/N PAL)

2001-06-25

PACKAGE DIMENSIONS SDIP64-P-750-1.78

Unit : mm

Weight : 8.85g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

● TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.