
OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

ABSOLUTE MAXIMUM RATINGS

at I _A = +25°C
Control Supply Voltage, V _{IN} 35 V
Drain-Source Voltage, V _{DS} 650 V
Drain Current, I _D
continuous 2.7 A
single-pulse, $t_w \le 1 \text{ ms} \dots 7.2 \text{ A}$
Avalanche Energy, E _{AS}
single-pulse 158 mJ
Over-Current Protection Voltage Range,
V _{OCP} 0.3 V to +6 V
Insulation RMS Voltage,
V _{WM(RMS)} 2000 V
Package Power Dissipation, P _D
control (V _{IN} x I _{IN(ON)}) 0.8 W
total See Graph
FET Channel Temperature, T ₁ +150°C
Internal Frame Temperature, T _F +125°C
Operating Temperature Range,
T _A 20°C to +125°C
Storage Temperature Range,
T _S 40°C to +125°C

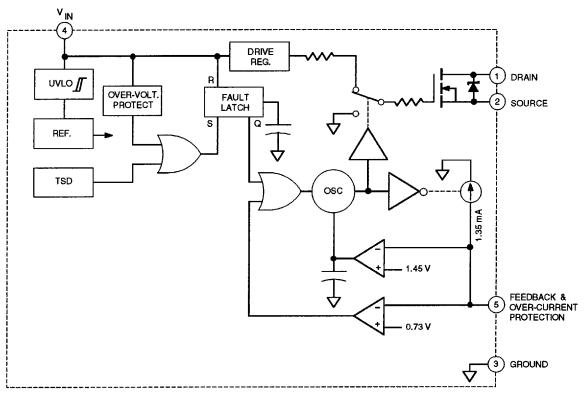
The STR-G6651 is specifically designed to satisfy the requirements for increased integration and reliability in off-line quasi-resonant flyback converters. This device incorporates the primary control and drive circuit with a discrete avalanche-rated power MOSFET.

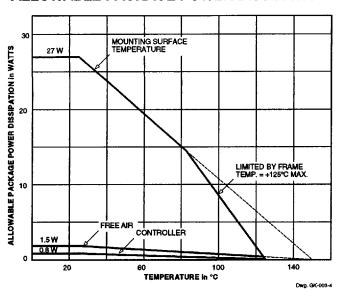
Cycle-by-cycle current limiting, under-voltage lockout with hysteresis, over-voltage protection, and thermal shutdown protects the power supply during the normal overload and fault conditions. Over-voltage protection and thermal shutdown are latched after a short delay. The latch may be reset by cycling the input supply. Low-current startup and a low-power standby mode selected from the secondary circuit completes a comprehensive suite of features. The device is provided in a five-pin over-molded TO-220 style package, affording dielectric isolation without compromising thermal characteristics.

Proven in substantial volumes, the STR-G6651 is a robust low-risk solution for off-line power supplies particularly where management of EMI at the source is a significant element of the system design.

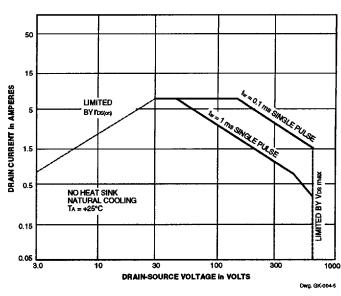
FEATURES

- Quasi-Resonant Operation
- Output Power to 66 W
- Low-Loss, Pulse-Ratio-Control Standby Mode
- Temperature-Compensated Pulse-by-Pulse Over-Current Protection
- Latched Over-Voltage and Thermal Protection
- Under-Voltage Lockout with Hysteresis
- Active Low-Pass Filter for Enhanced Light-Load Stability
- Switched Attenuation of Leading-Edge Current-Sensing Signal
- Regulated Soft Gate Drive
- Adjustable Switching Speed for EMI Control
- Overmolded Five-Pin Package


Always order by complete part number: STR-G6651


STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

FUNCTIONAL BLOCK DIAGRAM



Dwg. FK-002-5

ALLOWABLE PACKAGE POWER DISSIPATION

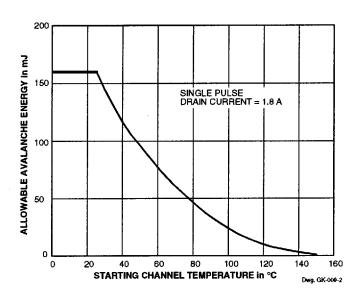
MAXIMUM SAFE OPERATING AREA

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 Copyright © 1999 Allegro MicroSystems, Inc.

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}\text{C}$, $V_{IN} = 18 \text{ V}$, $V_{DD} = 10 \text{ V}$, $V_S = 0$, voltage measurements are referenced to ground terminal (unless otherwise specified).

			Limits			_
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
On-State Voltage	V _{INT}	Turn-on, increasing V _{IN}	14.4	16	17.6	٧
Under-Voltage Lockout	V _{INQ}	Turn-off, decreasing V _{IN}	9.0	10	11	V
Over-Voltage Threshold	V _{OVP(th)}	Turn-off, increasing V _{IN}	20.5	22.5	24.5	٧
Drain-Source Breakdown Voltage	V _{(BR)DSS}	I _D = 300 μA	650	_	_	٧
Drain Leakage Current	I _{DSS}	V _{DS} = 650 V	-	_	300	μА
On-State Resistance	r _{DS(on)}	$V_S = 10 \text{ V}, I_D = 0.9 \text{ A}, T_J = +25 ^{\circ}\text{C}$	_	_	3.9	Ω
Maximum OFF Time	t _{off}	Drain waveform high	45	_	55	μs
Minimum Pulse Duration for Input of Quasi-Resonant Signals	t _{w(th)}	Drain waveform high¹	_	_	1.0	μs
Minimum OFF Time	t _{off}	Drain waveform high1	_	_	1.5	μs
Feedback Threshold Voltage	V _{FDBK}	Drain waveform low to high¹	0.68	0.73	0.78	V
		Oscillation synchronized ²	1.3	1.45	1.6	V
Over-Current Protection/Feedback Sink Current	I _{OCP/FB}	V _{OCP/FB} = 1.0 V	1.2	1.35	1.5	mA
Latch Holding Current	I _{IN(OVP)}	V _{IN} reduced from 24.5 V to 8.5 V	_	_	400	mA
Latch Release Voltage	V _{IN}	$I_{IN} \le 20 \mu A$, V_{IN} reduced from 24.5 V	6.6	_	8.4	V
Switching Time	t _f	$V_{DD} = 200 \text{ V}, I_{D} = 0.9 \text{ A}$	_	-	250	ns
Supply Current	I _{IN(ON)}	Operating ³	_		30	mA
	I _{IN(OFF)}	Increasing V _{IN} prior to oscillation		_	100	μА
Insulation RMS Voltage	V _{WM(RMS)}	All terminals simultaneous reference metal plate against backside	2000		_	V
Thermal Shutdown	T _J		140	_	_	°C
Thermal Resistance	$R_{\theta JM}$	Output junction-to-mounting frame	_	_	1.63	°C/W

Notes: Typical Data is for design information only.


^{1.} Feedback is square wave, $V_{IM} = 2.2 \text{ V}$, $t_h = 1 \text{ } \mu\text{s}$, $t_l = 35 \text{ } \mu\text{s}$

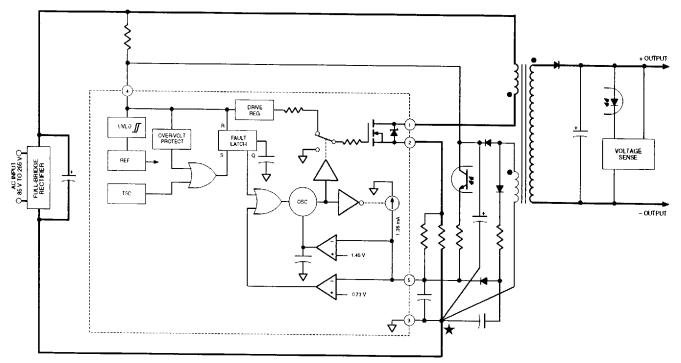
^{2.} For quasi-resonant operation, the input signal must be longer than $t_{w(th)}$ and greater than V_{FDBK}

^{3.} Feedback is square wave, V_{IM} = 2.2 V, t_h = 4 μs , t_l = 1 μs

STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

ALLOWABLE AVALANCHE ENERGY

STR-G6600 Series


Part Number	Drain-Source Output Breakdown Voltage at I _D = 300 μA V _{(BR)DS} , Minimum	Drain-Source ON Resistance at I _D = 0.9 A r _{DS(on)} , Maximum	Output Power
	For 100/120	V AC Input	
STR-G6622	450 V	2.18 Ω	44 W – 60 W
STR-G6624	450 V	0.92Ω $98 W - 130 W$	
	For 110/120	V AC Input	
STR-G6632	500 V	2.62Ω	36 W – 50 W
	For 200/220	V AC Input	
STR-G6651	650 V	3.95Ω	66 W
STR-G6652	650 V	$2.80~\Omega$	86 W
STR-G6653	650 V	1.95Ω	120 W

TYPICAL QUASI-RESONANT FLYBACK CONVERSION USING STR-G6651

WARNING: lethal potentials are present. See text.

Dwg. EK-003-4

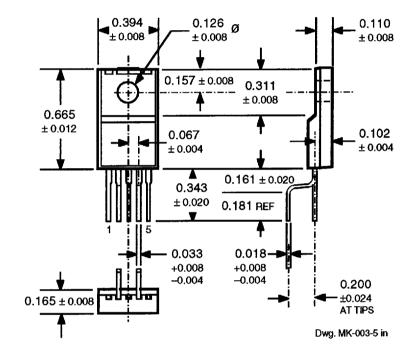
WA 7

WARNING — These devices are designed to be operated at lethal voltages and energy levels. Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

The use of an isolation transformer is recommended during circuit development and breadboarding.

Recommended mounting hardware torque:

4.34 - 5.79 lbf•ft (6 - 8 kg•cm or 0.588 - 0.784 Nm).

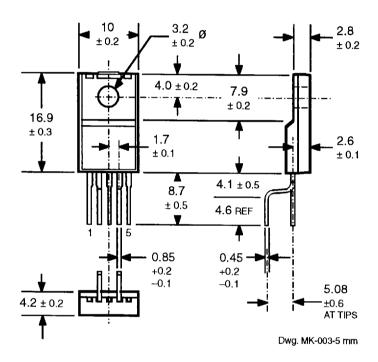

Recommended silicone grease:

Dow Corning SC102, Toshiba YG6260, Shin-Etsu G746., or equivalent

STR-G6651 OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATOR

Dimensions in Inches

(for reference only)



Dimensions in Millimeters

(controlling dimensions)

The products described here are manufactured in Japan by Sanken Electric Co., Ltd. for sale by Allegro MicroSystems, Inc.

Sanken Electric Co., Ltd. and Allegro MicroSystems, Inc. reserve the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of their products.

The information included herein is believed to be accurate and reliable. However, Sanken Electric Co., Ltd. and Allegro MicroSystems, Inc. assume no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.