

2П901A, 2П901Б, 2П901A—5, 2П901Б—5, КП901A, КП901Б

Транзисторы кремниевые планарные полевые с изолированным затвором и индуцированным каналом *п*-типа генераторные. Предназначены для применения в усилителях и генераторах в диапазоне коротких и ультракоротких длин волн. Транзисторы 2П901A, 2П901Б, КП901A, КП901Б выпускаются в металлокерамическом корпусе с жесткими выводами. Тип прибора указывается на корпусе. Транзисторы 2П901A—5, 2П901Б—5 выпускаются в виде кристаллов с контактными площадками без кристаллодержателя и без выводов для использования в гибридных интегральных микросхемах. Тип прибора указывается в этикетке.

Масса транзистора в металлокерамическом корпусе не более 6 г, кристалла не более 0,00012 г.

Электрические параметры

Коэффициент усиления по мощности	
при $U_{CH} = 50$ В, $U_{3H} = 0$:	
f= 100 MFu:	
2П901A, 2П901A-5, КП901A	
при Р _{вых} = 10 Вт	710*
при / вых — то вт	
20045 20045 5 MB0045	12,5* дБ
2П901Б, 2П901Б—5, КЛ901Б	
при $P_{\text{BblX}} = 6,7 \text{ Bt}$	
	12,5* дБ
f = 60 MFu:	
2П901А, 2П901А-5, КП901А	
при P _{вых} = 10 Вт	1013*16* дБ
2П901Б, 2П901Б-5, КП901Б	ionitio into pp
	1013*16* дБ
	Ю1310 до
Коэффициент полезного действия	
на $f = 60$ МГц при $U_{CH} = 50$ В, $U_{3H} = 0$:	
2П901А, 2П901А—5, КП901А	
при $P_{\text{вых}} = 10 \text{ Br}$	3540*44*%
2П901Б, 2П901Б—5, КП901Б	**
при $P_{\text{BblX}} = 6,7 \text{ Bт}$	3540*44*%
DDIX VI	

Крутизна характеристики при $U_{cu} = 20$ В,		
/ _c = 500 mA:		
7 = -60 °C:	20 / 🖰	
2П901A, 2П901A—5, КП9 1A, не менее 2П901Б, 2П901Б—5, КП901Б, не менее		
$T = +25 ^{\circ}\text{C}$.	40 MA/B	
2П901А, 2П901А—5, КП901А	50 110*	
21130 17, 21130 17 3, 11130 17	160* MA/B	
2П901Б, 2П901Б-5, КП901Б		
	170* MA/B	
T = +125 °C;	,	
2П901А, 2П901А-5, КП901А, не менее	20 MA/B	
2П901Б, 2П901Б-5, КП901Б, не менее	30 MA/B	
Ток стока при $U_{CH} = 20 \text{ B}, \ U_{3H} = 20 \text{ B}$:	vet tot tot some of total de-	
2П901A, 2П901A—5, КП901A	1,62,3*	
	3,7* A	
2П901Б, 2П901Б—5, КП901Б	1,21,4*	
	1,8* A	
Начальный ток стока при $U_{CH} = 20$ В, $U_{3H} = 0$:		
T = -60 °C, не более	500 MA	
T = +25 °C	15*50*	
T- 1125 °C 6	200 MA	
T = +125 °C, не более	400 MA	
Остаточный ток стока при $U_{CH} = 85 \text{ B}$, $U_{3H} = -15 \text{ B}$	3*7*50 MA	
Емкость затвор—исток $U_{3M} = -30 \text{ B}$	15*50*	
EMROCID Saibop—Metor D3N — So B IIIIIIIIIII	100 πΦ	
Проходная емкость при $U_{cu} = 25 \text{ B}$	100 110	
$U_{3H} = -15 \text{ B} \dots$	1,5*4*10 nΦ	
gn see sees sees sees		
Предельные эксплуатацнонные данные		
Напряжение сток-исток	70 B	
Импульсное напряжение сток-исток		
$при\;t_H=1\;мc$		
Напряжение затвор—сток	85 B	
Импульсное напряжение затвор—сток		
при t _и = 1 мс	100 B	
Напряжение затвор—исток		
Постоянный ток стока	4 A	
Постоянная рассенваемая мощность1	20 P-	
при $T_K \leq +25$ °C	ZU DT	

 $^{^1}$ При $T_{\rm K}$ > +25 °C максимально допустимая постоянная рассеиваемая мощность рассчитывается по формуле

$$P_{\text{MAKC}} = 20 [1 - (T_{\text{K}} - 25)/125], \text{ Bt.}$$

Температура <i>p-n</i> перехода	+155 °C
Температура окружающей среды	$-607_{K} =$
	= +125 °C

Минимальное расстояние места пайки выводов от корпуса транзистора 1 мм, температура пайки не выше +260 °C, время пайки не более 3 с.

Зависимости электрических параметров от напряжения и температуры для 2П901А—5, 2П901Б—5 аналогичны зависимостям 2П901А, 2П901Б.

Технология сборки транзисторов 2П901A—5, 2П901Б—5 в гибридные схемы, применяемые детали и материалы гибридных схем, должны обеспечить такое значение теплового сопротивления канал—теплоотвод, при котором температура кристалла должна быть не более +150 °C.

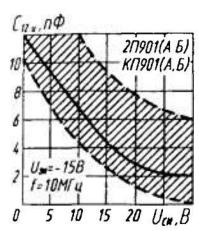
При монтаже транзисторов в составе гибридных схем необходимо выполнять следующие условия:

монтаж транзисторов в составе гибридных схем должен осуществляться с помощью ультразвуковой пайки в инертной среде. Температура пайки +400...+450 °C. В качестве припоя должна применяться золотая прокладка толщиной 0,02 мм. Основание, на которое напаивается транзистор, должно быть золоченое, толщиной покрытия 3...4 мкм. Рекомендуемый материал основания окись бериллия СБ—1 ТУ 957219—78;

присоединение выводов к контактным площадкам должно производиться ультразвуковой сваркой. В качестве выводов должна применяться алюминиевая плющенка А995Д 0,25... 0,03 мм ЖК 070217255 ТУ. Соединение выводов с контактной площадкой должно выдерживать разрывное усилие не менее 2 гс:

после ультразвуковой сварки выводов они не должны касаться структуры и боковых ребер транзистора;

не допускается смещение сварных точек, приводящее к закорачиванию элементов транзистора;

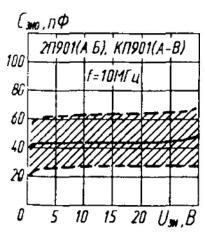

не допускается сильное натяжение и провисание выводов; не допускается разрыв (пережатие) алюминиевой проволоки в месте сварки.

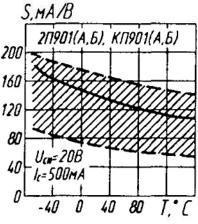
После извлечения транзисторов из упаковки изготовителя до присоединения выводов к контактным площадкам транзисторы должны находиться в специальной камере с инертной средой не более 10 сут. В случае использования части транзисторов из общей упаковки, неиспользованные транзисторы должны быть повторно упакованы в герметичную тару. Требование на хранение в специальной камере с инертной средой не более 10 сут распространяется на повторно упакованные транзисторы с момента вскрытия вторичной упаковки.

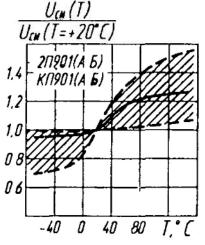
ИСТОК

исток

201901(A,B), K0901(A,B) 1000 800 600 400 Ua= 10B


Ic.MA


 C_{12} , $\Pi\Phi$ 201901(A, B), K11901(A, B 10 Uc=20B, f=10M/u


Зона возможных положений зависимости проходной емкости от напояжения сток-исток

Зона возможных положений зависимости тока стока от напряжения затвор-исток

Зона возможных положений зависимости проходной емкости от напряжения затвористок

Зона возможных положений зависимости емкости затвор-исток от напряжения затвор-**ИСТОК**

Зона возможных положений зависимости крутизны характеристики от температуры

Зона возможных положений зависимости относительного изменения пробивного напряжения сток-исток от температуры