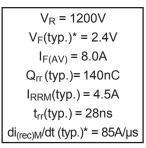
International Rectifier

HFA08TB120S

HEXFRED™

Ultrafast, Soft Recovery Diode


Features

- · Ultrafast Recovery
- · Ultrasoft Recovery
- Very Low I_{RRM}
- · Very Low Qrr
- · Specified at Operating Conditions

Benefits


- · Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count

Base Cathode 2 2 1 3 N/C Anode

Description

International Rectifier's HFA08TB120S is a state of the art ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 1200 volts and 8 amps continuous current, the HFA08TB120S is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the to portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA08TB120S is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _R	Cathode-to-Anode Voltage	1200	V
I _F @ T _C = 100°C	Continuous Forward Current	8.0	
I _{FSM}	Single Pulse Forward Current	130	Α
I _{FRM}	Maximum Repetitive Forward Current	32	
P _D @ T _C = 25°C	Maximum Power Dissipation	73.5	W
P _D @ T _C = 100°C	Maximum Power Dissipation	29	vv
TJ	Operating Junction and	EE to 1450	°C
T _{STG}	Storage Temperature Range	-55 to +150	

^{* 125°}C

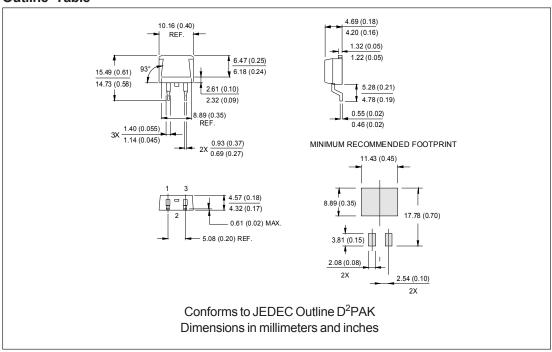
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
V_{BR}	Cathode Anode Breakdown Voltage	1200			V	$I_R = 100 \mu A$	
V _{FM}	Max Forward Voltage		2.6	3.3		$I_F = 8.0A$	
			3.4	4.3	V	I _F = 16A	
			2.4	3.1		$I_F = 8.0A, T_J = 125^{\circ}C$	
I _{RM}	Max Reverse Leakage Current		0.31	10	μA	V _R = V _R Rated	
			135	1000	μΛ	$T_J = 125$ °C, $V_R = 0.8 \times V_R \text{ Rated}_{\text{B Rated}}$	
C _T	Junction Capacitance		11	20	pF	$V_{R} = 200V$	
L _S	Series Inductance		8.0		nH	Measured lead to lead 5mm from package body	

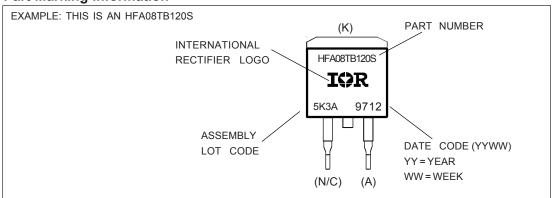
Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

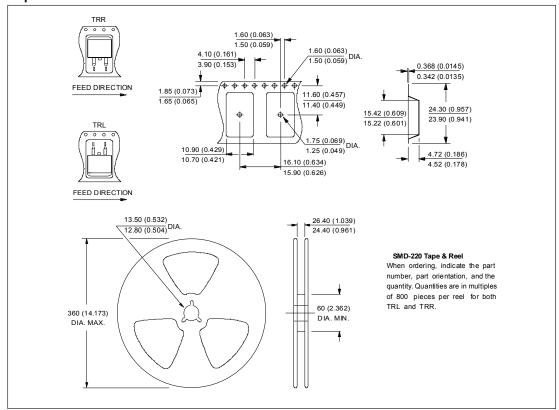
-	-			•		-	•
	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
t _{rr}	Reverse Recovery Time		28			$I_F = 1.0A$, $di_f/dt = 200A/\mu s$, $V_R = 30V$	
t _{rr1}	See Fig. 5		63	95	ns	T _J = 25°C	
t _{rr2}			106	160		T _J = 125°C	I _F = 8.0A
I _{RRM1}	Peak Recovery Current		4.5	8.0	Α	$T_J = 25^{\circ}C$	
I _{RRM2}	See Fig. 6		6.2	11		T _J = 125°C	V _R = 200V
Q _{rr1}	Reverse Recovery Charge		140	380	nC	T _J = 25°C	
Q _{rr2}	See Fig. 7		335	880		T _J = 125°C	di∉dt = 200A/µs
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		133		A/us	$T_J = 25^{\circ}C$	
di _{(rec)M} /dt2	During t _b See Fig. 8		85		-λ.μδ	T _J = 125°C	

Thermal - Mechanical Characteristics


	Parameter	Min.	Тур.	Max.	Units
T _{lead} ①	Lead Temperature			300	°C
R _{thJC}	Thermal Resistance, Junction to Case			1.7	K/W
R _{thJA} ②	Thermal Resistance, Junction to Ambient			40	IV/VV
Wt	Weight		2.0		g
			0.07		(oz)

① 0.063 in. from Case (1.6mm) for 10 sec


② Typical Socket Mount


Outline Table

Part Marking Information

Tape & Reel Information

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IRWORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 11/03

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.