

# SPECIFICATION OF CERAMIC FILTER

## LT450HTU

- 1. THIS SPECIFICATION SHALL COVER THE CHARACTERISTICS OF CERAMIC FILTER WITH 450KHz,INTENED FOR USE IN TRANSCEIVERS,ETC.
- 2. PART NUMBER : LT450HTU
- 3. ELECTRONICAL SPECIFICATIONS

A. CENTRE FREQUENCY (f. ) : 450KHz±1.0KHz. MAX.

B. BAND WIDTH AT 6 dB  $\pm 3.0$  KHzMIN.(TO 450KHz)

C. BAND WIDTH AT 40 dB  $\pm 9.0$  KHz Max.(TO 450KHz)

D. STOP BAND ATTENUATION : 35 dB Min(AT f.  $\pm 100$ KHz)

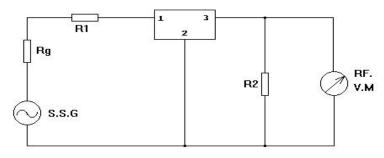
E. RIPPLE : 2.0 dB Max.

F. INSERTION LOSS : 6.0 dB Max (AT THE SMALLEST LOSS)

G. TEMPRATURE COEFFICIENT

OF CENTER FRENQUENCY :  $\pm 50$ PPM/°C Max.(-20 TO +80°C)

H. INPUT/OUTPUT IMPEDANCE : 2.0K $\Omega$ 


NOTE: A) CENTER FREQUENCY SHALL BE DEFIED AS THE CENTRAL VALUE OF THE BAND WITH AT 6 dB

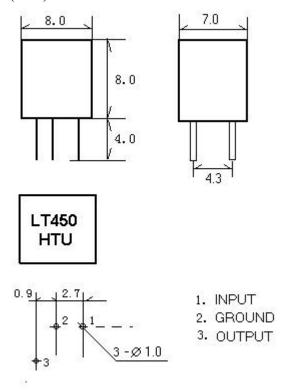
B) TEMPRATURE COEFFICIENT OF CENTER FREQUENCY SHALL BE DEFINED AS THE AVERAGE OF THE CENTRAL FREQUECY.

#### 4. MEASUREMENT

A. ENVIRONMENTAL CONDITION MEASUREMENT SHALL BE CARRIED OUT AT THE REFERENCE TEMPERATURE OF 25 °C  $\pm$  2 °C. IT SHALL BE POSSIBLY DONE AT 5 °C TO 35 °C UNLESS IT IS QUESTIONABLE.

B. MEASURING CIRCUIT




Rg+R1=R2=Input/Output Impedance

#S.S.G. (STANDARD SIGNAL GENERATION) R.F.V.M. (RADIO FREQUENCY VOLTAGE METER) Rg+R1=R2=2.0 K  $\Omega$ 



C<=50 PF

### 5. DIMENSIONS(MM)



### 6. ENVIRONMENTAL CHARACTERISTICS

- 6-1 HIGH TEMPERATURE EXPOSURE

  SUBJECT THE FILTER TO +80°C FOR 96 HOURS. THEN

  RELEASE THE FILTER INTO THE ROOM CONDITIONS FOR 1 TO

  2 HOURS PRIOR TO THE MEASUREMENT. IT SHALL FULFILL THE

  SPECIFICATIONS IN TABLE 1.
- 6-2 MOISTURE

  KEEP THE FILTER AT 40°C AND 95% RH FOR 96 HOURS.THEN

  RELEASE THE FILTER INTO THE ROOM CONDITIONS FOR 1 TO

  2 HOURS PRIOR TO THE MEASUREMENT. IT SHALL FULFILL THE

  SPECIFICATIONS IN TABLE 1.
- 6-3 LOW TEMPERATURE EXPOSURE

  SUBJECT THE FILTER TO -20°C FOR 96 HOURS. THEN RELEASE THE

  FILTER INTO THE ROOM CONDITIONS FOR 1 TO 2 HOURS PRIOR TO

  THE MEASUREMENT. IT SHALL FULFILL THE SPECIFICATIONS IN

  TABLE 1.
- 6-4 TEMPERATURE CYCLING

  SUBJECT THE FILTER TO A LOW TEMPERATURE OF -55°C FOR 30

  MINUTES, FOLLOWSING BY A HIGH TEMPERATURE OF +85°C FOR 30



MINUTES. THEN RELEASE THE FILTER INTO THE ROOM CONDITIONS FOR 1 TO 2 HOURS PRIOR TO THE MESUREMENT. IT SHALL MEET THE SPECIFICATIONS IN TABLE 1.

### 6-5 RESISTANCE TO SOLDER HEAT

DIP THE FILTER TERMINALS NO CLOSER THAN 1.5mm INTO THE SOLDER BATH AT  $270\,^{\circ}\text{C}$   $\pm\,10\,^{\circ}\text{C}$  FOR  $10\,\pm\,1$  SEC. THEN RELEASE THE FILTER INTO THE ROOM CONDITIONS FOR 1 TO 2 HOURS. THE FILTER SHALL MEET THE SPECIFICATIONS IN TABLE 1.

### 6-6 MECHANICAL SHOCK

DROP THE FILTER RANDOMLY ONTO THE CONCRETE FLOOR FROM THE HEIGHT OF 30cm 3 TIMES.THE FILTER SHALL FULFILL THE SPECIFICATIONS IN TABLE 1.

#### 6-7 VIBRATION

SUBJECT THE FILTER TO THE VIBRATION FOR 1 HOUR EACH IN X,Y AND Z AXES WITH THE AMPLITUDE OF 1.5 mm AT 10 TO 55 Hz. THE FILTER SHALL FULFILLTHE SPECIFICATIONS IN TABLE 1.

#### 6-8 LEAD FATIGUE

### 6-8-1 PULLING TEST

WEIGHT ALONG WITH THE DIRECTION OF LEAD WITHOUT AN SHOCK 3 KG. THE FILTER SHALL SATISFY ALL THE INITIAL CHARACTERISTICS.

#### 6-8-2 BENDING TEST

LEAD SHALL BE SUBJECT TO WITHSTAND AGAINST 90°C BENDING IN THE DERECTION OF THICKNESS. THIS OPERATION SHALL BE DONE TOWARD BOTH DIRECTION. THE FILTER SHALL SHOW NO EVIDENCE OF DAMAGE AND SHALLSATISFY ALL THE INITIAL ELECTRICAL CHARACTERISTICS.

TABLE 1

| ITEM                  | SPECIFICATION   |
|-----------------------|-----------------|
| CENTRE FREQUENCY(f。)  | 450±1.0 KHz Max |
| BAND WIDTH(6 dB)      | ±3.0 KHz Min    |
| SELECTIVITY(40dB)     | ±9.0 KHz Max    |
| STOP BAND ATTENUATION | 35 dB Min       |
| RIPPLE                | 2.0 dB Max      |
| INSERTION LOSS        | 6.0dB Max       |