
1.Package

Ceramic package QCC8C Dimensions in mm, approx.weight 0.1g

2.Marking

Rugular

2.1.Center Frequency (MHz): 433.92

3.Performance

3.1 Absolute Maximum Ratings

Rating	Value	Units
CW RF Power	+0	dBm
DC Voltage between	±30	VDC
Case Temperature	-35 to +85	¢ J

Characteristic		Sym	Minimum	Typical	Maximum	Units	
Nominal Frequency		f _c		433.920		MHz	
Insertion Loss		IL		3.0	5.5	dB	
3dB Bandwidth		BW ₃		600		kHz	
Passband Ripple					i Ó	dB	
Temperature Stability	Turnover Temperature	T ₀	15	25	35	¢ J	
	Turnover Frequency	fo		fc		kHz	
	Frequency Temperature Coefficient	FTC		0.032		ppm/¢ Ĵ	
Frequency Aging Absolute Value during the First Year		fA		10		ppm/yr	
DC Insulation Resistance between Any Two Pins			1.0			M£ [
Rejection	at fc-21.4MHz(Image)		40	50			
	at f _c -10.7MHz(Low)		15	30		dB	
	Ultimate			80			

3.2Electrical Characteristics

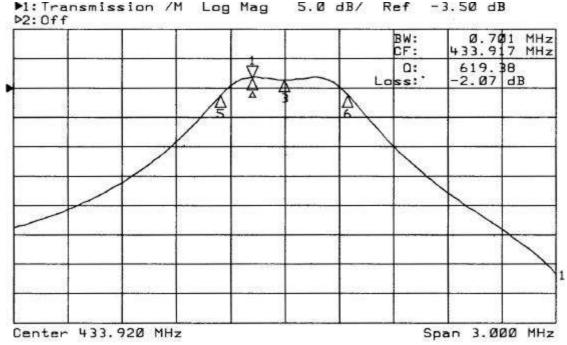
; CAUTION: Electrostatic Sensitive Device. Observe precautions for handling NOTES ;

1.Frequency aging is the change in f_c with time and is specified at +65¢ **b**r less. Aging may exceed the specification for prolonged temperatures above +65¢ **J**Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

2. The frequency f_c id the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR ≤ 1.2 : 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_c .

3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.

4.Unless noted otherwise , case temperature $T_c=+25$ ¢ J \acute{Dc} J


5. The design, manufacturing process, and specifications of this device are subject to change without notice.

6. Derived mathematically from one or more of the following directly measured parameters: $\rm f_c,$ IL, 3 dB bandwidth, $\rm f_c$ versus $\rm T_c$, and $\rm C_0.$

7.Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal center frequency at any case temperature , TC, may be calculated from : $f = f_0$

; •-FTC $(T_0-T_C)^2$; **f**Typically, oscillator T_0 is 20° less than the specified resonator T_0 . 8.This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance

4. Typical Frequency Response

5.Reliability

- 5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s²,duration 6 milliseconds.
- 5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- 5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85¢ ±2¢ for 48 hours, then kept at room temperature for 2 hours.
- 5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25¢ ± 2 ¢ for 48 hours, then kept room temperature for 2 hours.
- 5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80℃ for 30 minutes →25℃ for 5 minutes → -25℃ J for 30 minutes) than kept at room temperature for 2 hours.
- 5.7 Solder-heat Resistance : The components shall remain within the electrical specifications after dipped in the solder at 260¢ **f**or 10±1 seconds, then kept at room temperature for 2 hours .(Terminal must be dipped leaving 1.5 mm from the case).
- 5.8 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230¢ J±5¢ for 5±1 seconds.

6.Remarks

- 6.1 Static voltage
 - Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage .
- 6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

S.P.K. ELECTRONICS CO., LTD.

TEL:+886-2-2346-2323 FAX:+886-2-2346-3939 E-Mail:spktw@ms34.hinet.net <u>http://www.spkecl.com</u>