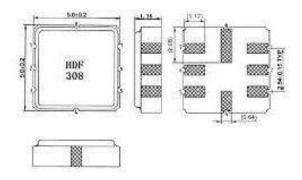
Approved	hw
1 ippio ved	Uy.

Checked by:

Issued by:

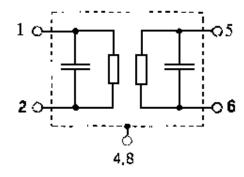
SPECIFICATION

MODEL: HDF311MS3


MARKING: <u>HDF308</u>

SHOULDER ELECTRONICS LIMITED

1.Package


Ceramic package QCC8C

Dimensions in mm, appr. weight 0.1g

Pin configuration

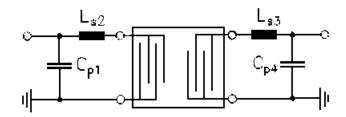
- 1 Input
- 2 Input Ground
- 5 Output
- 6 Output Ground
- 4, 8 Case Ground

2. Performance

2.1 Absolute Maximum Ratings

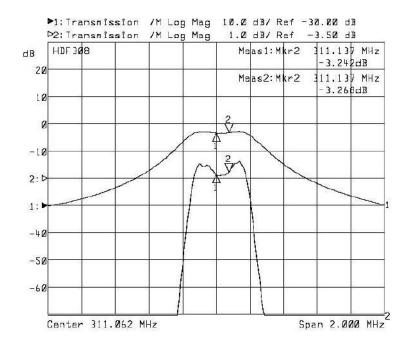
Rating	Value	Units	
Incident RF Power	+13	dBm	
Case Temperature	-40 to +85	${\mathbb C}$	
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC	

2.2 Electrical Characteristics


Reference temperature: $T_A = 25^{\circ}C$

Terminating source impedance: Zs = 50Ω and matching network Terminating load impedance: ZL = 50Ω and matching network

	Characteristic	Min.	Тур.			
Center Frequency f _c (center frequency between 3dB points)			311.0625		MHz	
Insertion Loss IL			3.0	5.5	dB	
3dB Passband BW ₃			±200		kHz	
3 dB Reject Band BW ₃				±500	kHz	
Rejection	at f _c -21.4MHz(Image)	40	50			
	at f_c -10.7MHz(LO)	15	30		dB	
	Ultimate		80			
Temperature	Operating Case Temperature Tc	-35		+85	$^{\circ}$	
	Turnover Temperature To	40				
	Turnover Frequency fo		fc		MHz	
	Frequency Temperature Coefficient FTC		0.032		ppm/°C	
Frequency Aging Absolute Value during the First Year fA			10		ppm/yr	


CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

3.Matching network to 50Ω (element values depend on pcb layout and equivalent circuit)

Cp1 =10pF, Ls2 =43nH*, Ls3 =43nH*, Cp4 =10pF Ls2 = Ls3 = 6 turns of 0.51mm insulated Copper, 2.5mm ID.

Typical Frequency Response

4. ENVIRONMENTAL CHARACTERISTICS

4-1 Temperature cycling

Subject the device to a low temperature of $-40\,^{\circ}\mathrm{C}$ for 30 minutes. Following by a high temperature of $+25\,^{\circ}\mathrm{C}$ for 5 Minutes and a higher temperature of $+85\,^{\circ}\mathrm{C}$ for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the

specifications in table 1.

4-2 Resistance to solder heat

Submerge the device terminals into the solder bath at 260° C $\pm 5^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. It shall meet the specifications in table 1.

4-3 Solderability

Submerge the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in table 1.

4-4 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1 m 3 times. the filter shall fulfill the specifications in table 1.

4-5 Vibration

Subject the device to the vibration for 2 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 hz. The filter shall fulfill the specifications in table 1.

5. REMARK

5.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

5.2 Ultrasonic cleaning

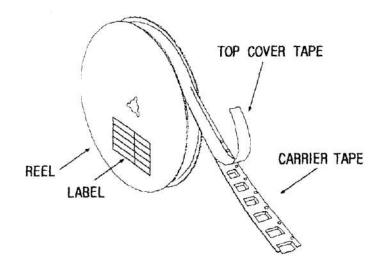
Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

5.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

7. Packing

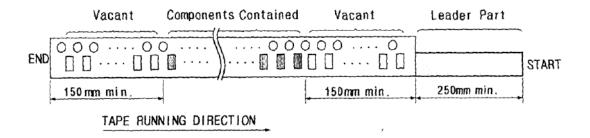
7.1 Dimensions


- (1) Carrier Tape: Figure 1
- (2) Reel: Figure 2
- (3) The product shall be packed properly not to be damaged during transportation and storage.

7.2 Reeling Quantity

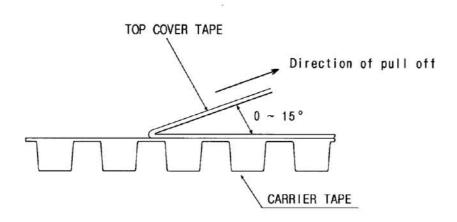
1000 pcs/reel 7" 3000 pcs/reel 13"

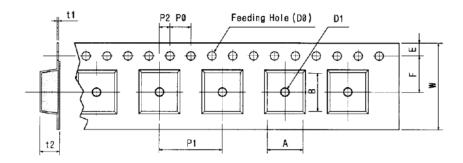
7.3 Taping Structure


(1) The tape shall be wound around the reel in the direction shown below.

(2) Label

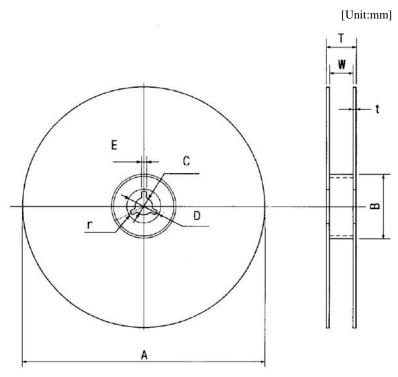
Device Name	
User Product Name	
Quantity	
Lot No.	


(3) Leader part and vacant position specifications.


8. TAPE SPECIFICATIONS

- 8.1 Tensile Strength of Carrier Tape: 4.4N/mm width
- 8.2 Top Cover Tape Adhesion (See the below figure)
 - (1) pull off angle: $0\sim15^{\circ}$
 - (2) speed: 300mm/min.

(3) force: 20~70g


[Figure 1] Carrier Tape Dimensions

Tape Running Direction

							[Unit:mm]				
W	F	Е	P0	P1	P2	D0	D1	t1	t2	A	В
12.0±	5.5	1.75 ±	4.0	8.0	2.0	Ø1.5±	Ø1.0	0.3	2.10±	6.40±	5.20±
0.3	± 0.05	0.1	± 0.1	± 0.1	± 0.05	0.1	± 0.25	± 0.05	0.1	0.1	0.1

[Figure 2]

