Approved by:

Checked by:
Issued by:

SPECIFICATION

 PRODUCT: SAW FILTER MODEL: HD F916AN S6

1. Package Dimension

1	INPUT
2	OUTPUT
3	GROUND

2. Marking

W306

1.Color: Black or Blue
2.916: Center Frequency(MHz)

3. Performance

3.1Application

Low-Loss SAW Filter of cordless system.
Center Frequency: 916 MHz
3.2Maximum Rating

Operation Temperature Range	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC. Voltage	10 V max.
Maximum Input Power	10 dBm

3.3Electronic Characteristics

Item	Specification
Center Frequency(fo)	916 MHz
Insertion Loss(dB)	
1.) $915-917 \mathrm{MHz}$	4.5 max
2.$) 900 \sim 902 \mathrm{MHz}$	35 min
3.) $925 \sim 930 \mathrm{MHz}$	35 min
4.$) 850 \sim 900 \mathrm{MHz}$	40 min.
5.)950~1000 MHz	40 min.
Ripple deviation (915-917MHz)(dB)	1.5 max
Input/output Impedance(Nominal)	50Ω

3.4 Frequency Characteristics

3.5 Test Circuit

4. ENVIRONMENTAL CHARACTERISTICS

4-1 Temperature cycling
Subject the device to a low temperature of $-40^{\circ} \mathrm{C}$ for 30 minutes. Following by a high temperature of $+25^{\circ} \mathrm{C}$ for 5 Minutes and a higher temperature of $+85^{\circ} \mathrm{C}$ for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the specifications in table 1 .
4-2 Resistance to solder heat
Submerge the device terminals into the solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for $10 \pm 1 \mathrm{sec}$. Then release the device into the room conditions for 4 hours. It shall meet the specifications in table 1 .
4-3 Solderability
Submerge the device terminals into the solder bath at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 5 s , More than 95% area of the soldering pad must be covered with new solder. It shall meet the specifications in table 1.
4-4 Mechanical shock
Drop the device randomly onto the concrete floor from the height of 1 m 3 times. the filter shall fulfill the specifications in table 1.
4-5 Vibration
Subject the device to the vibration for 2 hour each in x, y and z axes with the amplitude of 1.5 mm at 10 to 55 hz . The filter shall fulfill the specifications in table 1 .

5. REMARK

5.1 Static voltage

Static voltage between signal load \& ground may cause deterioration \&destruction of the component. Please avoid static voltage.
5.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration \& destruction of the component. Please avoid ultrasonic cleaning
5.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

6. Packing

6.1 Dimensions
(1) Carrier Tape: Figure 1
(2) Reel: Figure 2
(3) The product shall be packed properly not to be damaged during transportation and storage.
6.2 Reeling Quantity
$1000 \mathrm{pcs} /$ reel $7 "$
$3000 \mathrm{pcs} /$ reel $13^{\prime \prime}$
6.3 Taping Structure
(1) The tape shall be wound around the reel in the direction shown below.

(2) Label

Device Name	
User Product Name	
Quantity	
Lot No.	

(3) Leader part and vacant position specifications.

TAPE RUNNING DIRECTION

7. TAPE SPECIFICATIONS

7.1 Tensile Strength of Carrier Tape: $4.4 \mathrm{~N} / \mathrm{mm}$ width
7.2 Top Cover Tape Adhesion (See the below figure)
(1) pull off angle: $0 \sim 15^{\circ}$
(2) speed: $300 \mathrm{~mm} / \mathrm{min}$.
(3) force: 20~70g

[Figure 1] Carrier Tape Dimensions

Tape Running Direction
[Unit:mm]

W	F	E	P 0	P 1	P 2	D 0	D 1	t 1	t 2	A	B
12.00	5.50	1.75	4.00	4.00	2.00	$\nmid .50$	$Ø 1.5$	0.31	1.30	3.4	3.4
± 0.30	± 0.10		± 0.25	± 0.05	± 0.10	MAX.	MAX				

[Figure 2]
Unit:mm]

