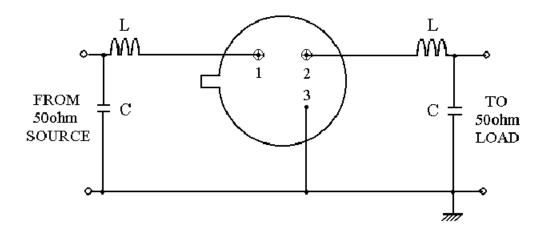
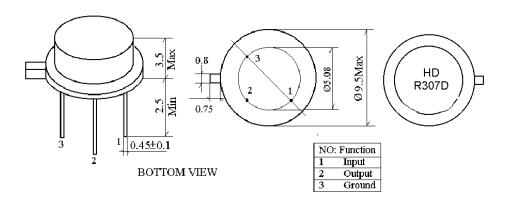
SPECIFICATION OF SAW RESONATOR

1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	10V		
AC Voltage Vpp	10V50Hz/60Hz		
Operation temperature	-40 to +85		
Storage temperature	-45 to +85		
RF Power Dissipation	0dBm		


Electronic Characteristics

Item		Unites	Minimum	Typical	Maximun
Center Frequency		MHz	307.2	307.3	307.4
Insertion Loss		dB		7.0	8.0
Quality Factor Unload Q				12,000	
50 Loaded Q				6,300	
Temperature	Turnover Temperatu	re	36	51	66
Stability	TurnoverFreqency	KHz		fo+11	
	Freq.Temp.Coefficient	ppm/		0.037	
Frequency Aging (During the first year)		ppm/y	/r	<± 10	
DC. Insulation Resistance		M	1.0		
	Motional Resistance R1			107	152
RF Equivalent	;				
RLC Model	Motional Inductance L1	μH		481.378	
	Motional Capacitance C	ı pF		0.2794	
Shunt Static Capacitance		pF		1.3	

3.TEST CIRCUIT

4. DIMENSION

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to +80 for 96 hours. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-2 Moisture

Keep the device at 40 and 95% rh for 96 hours, then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-3 Low temperature exposure

Subject the device to -20 for 96 hours. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-4 Temperature cycling

Subject the device to a low temperature of -55 for 30 minutes. Following by a high temperature of +85 for 30 Minutes. Then release the device into the room conditions for 1 to 2 hours prior to the measurement. It shall meet the specifications in table 1.

5-5 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 270 ± 10 for 10 ± 1 sec. Then release the device into the room conditions for 1 to 2 hours. The Filter shall meet the specifications in table 1.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 30cm 3 times, the device shall fulfill the specifications in table 1.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 hz. The device shall fulfill the

specifications in table 1.

5-8 Lead fatigue

5-8-1 Pulling test

Weight along with the direction of lead without an shock 3 kg. The device shall satisfy all the initial Characteristics.

5-8-2 Bending test

Lead shall be subject to withstand against 90 bending in the direction of thickness. This operation shall be done toward both direction. The device shall show no evidence of damage and shall satisfy all the initial electrical characteristics.

6. REMARK

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.