

规格书编号

SPEC NO:

产品规格书 SPECIFICATION

CUSTOMER 客 户:				
PRODUCT 产品:	SAW RESONATOR			
MODEL NO 型 号:	HDR308MS2			
PREPARED 编 制:	CHECKED 审 核	:		
APPROVED 批 准:	DATE日期	: 2016-7-16		
客户确认 CUSTOMER RE	CCEIVED:			
审核 CHECKED	批准 APPROVED	日期 DATE		

无锡市好达电子有限公司 Shoulder Electronics Limited

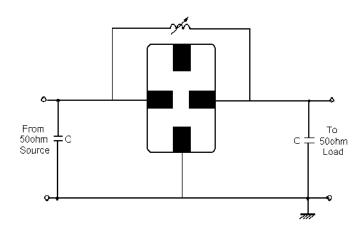
更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

SAW RESONATOR

1. SCOPE

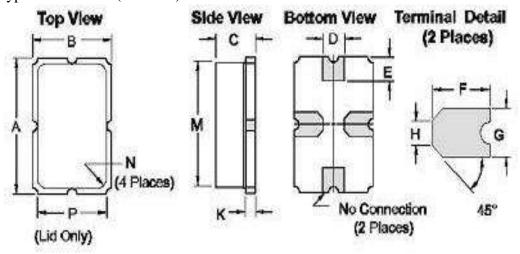
This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.

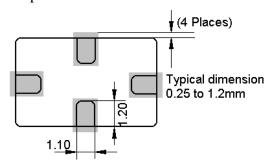

2. ELECTRICAL SPECIFICATION

DC Voltage VDC	10V
AC Voltage Vpp	10V50Hz/60Hz
Operation temperature	-40°C to +85°C
Storage temperature	-45°C to +85°C
RF Power Dissipation	0dBm

2.2 Electronic Characteristics

Item		Unites	Minimum	Typical	Maximum
Center Frequency		MHz	307.925	308.000	308.075
Insertion Loss		dB		1.5	2.5
Quality Factor Unload Q				11000	
50Ω Loaded	Q			2000	
Temperature	Turnover Temperature	$^{\circ}\mathbb{C}$	10	25	40
Stability	Freq.temp.Coefficient	ppm/°C2		0.037	
Frequency Ag	Frequency Aging			≤10	
DC. Insulation	n Resistance	МΩ	1.0		
DE Equivalan	Motional Resistance R1	Ω		10	26
RF Equivalent RLC Model Motional Inductance L		μН		86	
Mo	Motional Capacitance C1	fF		1.56	
Transducer St	atic Capacitance	pF	1.7	2.0	2.3


3. TEST CIRCUIT


4. DIMENSION

4-1 Typical dimension(unit:mm)

Dimensions	Millimeters		Inches	
	Min	Max	Min	Max
A		5.97		0.235
В		3.94		0.155
С	70000	2.16		0.085
D	0.94	1.10	0.037	0.043
E	0.83	1.20	0.033	0.047
F	1.16	1.53	0.046	0.060
G	0.94	1.10	0.037	0.043
Н	0.43	0.59	0.017	0.023
K	0.43	0.59	0.17	0.023
M		5.31		0.209
N	0.38	0.64	0.015	0.025
Р		3.28		0.129

4-2 Typical circuit board land patter

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to $+85^{\circ}$ C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-2 Low temperature exposure

Subject the device to -40° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-3 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2.2.

5-5 Solderability

Subject the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x, y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

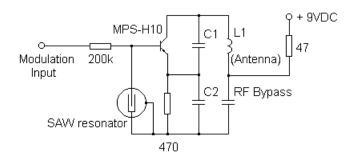
6. REMARK

6.1 Static voltage

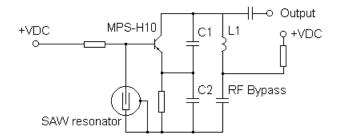
Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning


6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.



7.TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

