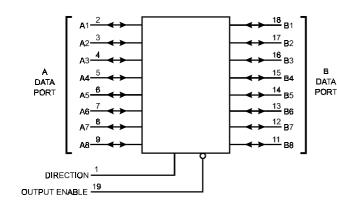
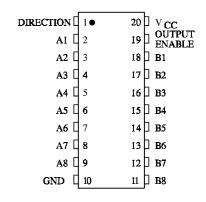
IN74AC620


Octal 3-State Inverting Bus Transceiver High-Speed Silicon-Gate CMOS

The IN74AC620 is identical in pinout to the LS/ALS620, HC/HCT620. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

The IN74AC620 is a 3-state transceiver that is used for 2-way communication between data buses. Two separate enables are available. The enable for bus A to B is active-high, the enable for bus B to A is active-low.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA; 0.1 μA @ 25°C
- High Noise Immunity Characteristic of CMOS Devices
- Outputs Source/Sink 24 mA


LOGIC DIAGRAM

 $PIN 20=V_{CC}$ PIN 10 = GND

PIN ASSIGNMENT

FUNCTION TABLE

Contr	ol Inputs					
Output Enable	Direction	Operation				
L	L	Data Transmitted from Bus B to Bus A (inverted)				
Н	Н	Data Transmitted from Bus A to Bus B (inverted)				
Н	L	Buses Isolated				
L	Н	(High Impedance State)				

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V_{IN}	DC Input Voltage (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
V_{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
I_{IN}	DC Input Current, per Pin	±20	mA
I_{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I_{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	750 500	mW
Tstg	Storage Temperature	-65 to +150	°C
$T_{\rm L}$	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V_{IN}, V_{OUT}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V_{CC}	V
T_{J}	Junction Temperature (PDIP)		140	°C
T_{A}	Operating Temperature, All Package Types	-40	+85	°C
I_{OH}	Output Current - High		-24	mA
I_{OL}	Output Current - Low		24	mA
t _r , t _f	Input Rise and Fall Time * $V_{CC} = 3.0 \text{ V}$ (except Schmitt Inputs) $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	0 0 0	150 40 25	ns/V

 $^{^*}V_{IN}~$ from 30% to 70% V_{CC}

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

⁺Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

			V _{CC}	Guaranteed Limits		
Symbol	Parameter	Test Conditions	V	25 °C	-40°C to 85°C	Unit
V_{IH}	Minimum High-Level Input Voltage	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	3.0 4.5 5.5	2.1 3.15 3.85	2.1 3.15 3.85	V
V _{IL}	Maximum Low - Level Input Voltage	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	3.0 4.5 5.5	0.9 1.35 1.65	0.9 1.35 1.65	V
V _{OH}	Minimum High-Level Output Voltage	$I_{OUT} \le -50 \mu A$	3.0 4.5 5.5	2.9 4.4 5.4	2.9 4.4 5.4	V
		$^*V_{IN}$ = V_{IH} or V_{IL} I_{OH} =-12 mA I_{OH} =-24 mA I_{OH} =-24 mA	3.0 4.5 5.5	2.56 3.86 4.86	2.46 3.76 4.76	
V _{OL}	Maximum Low-Level Output Voltage	$I_{OUT} \le 50 \mu A$	3.0 4.5 5.5	0.1 0.1 0.1	0.1 0.1 0.1	V
		$^*V_{IN}$ = V_{IH} or V_{IL} I_{OL} =12 mA I_{OL} =24 mA I_{OL} =24 mA	3.0 4.5 5.5	0.36 0.36 0.36	0.44 0.44 0.44	
I_{IN}	Maximum Input Leakage Current	V _{IN} =V _{CC} or GND	5.5	±0.1	±1.0	μΑ
I_{OZ}	Maximum Three- State Leakage Current	V_{IN} (OE)= V_{IH} or V_{IL} V_{IN} = V_{CC} or GND V_{OUT} = V_{CC} or GND	5.5	±0.6	±6.0	μΑ
I _{OLD}	+Minimum Dynamic Output Current	V _{OLD} =1.65 V Max	5.5		75	mA
I_{OHD}	+Minimum Dynamic Output Current	V _{OHD} =3.85 V Min	5.5		-75	mA
I_{CC}	Maximum Quiescent Supply Current (per Package)	V _{IN} =V _{CC} or GND	5.5	8.0	80	μА

^{*} All outputs loaded; thresholds on input associated with output under test.

Note: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}

⁺Maximum test duration 2.0 ms, one output loaded at a time.

AC ELECTRICAL CHARACTERISTICS(C_L =50pF,Input t_r = t_f =3.0 ns)

		V _{CC} * Guaranteed Limits					
Symbol	Parameter	V	25 °C		-40°C to 85°C		Unit
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay, A to B, B to A (Figure 1)	3.3 5.0	1.5 1.5	8.5 6.5	1.0 1.0	9.5 7.5	ns
t _{PHL}	Propagation Delay, A to B , B to A (Figure 1)	3.3 5.0	1.5 1.5	8.5 6.0	1.0 1.0	9.5 7.0	ns
t _{PZH}	Propagation Delay, Direction or Output Enable to A or B (Figure 2)	3.3 5.0	2.5 1.5	11.5 8.5	2.0 1.0	13.0 9.5	ns
t _{PZL}	Propagation Delay, Direction or Output Enable to A or B (Figure 2)	3.3 5.0	2.5 1.5	12.0 9.0	2.0 1.0	13.5 10.0	ns
$t_{ m PHZ}$	Propagation Delay, Direction or Output Enable to A or B (Figure 2)	3.3 5.0	2.0 1.5	12.0 9.0	1.0 1.0	13.0 10.0	ns
t_{PLZ}	Propagation Delay, Direction or Output Enable to A or B (Figure 2)	3.3 5.0	2.0 1.5	12.0 9.0	1.5 1.0	13.0 10.0	ns
C _{IN}	Maximum Input Capacitance	5.0	4	.5	4.	5	pF

		Typical @25°C,V _{CC} =5.0 V	Ì
C_{PD}	Power Dissipation Capacitance	45	pF

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V Voltage Range 5.0 V is 5.0 V ± 0.5 V

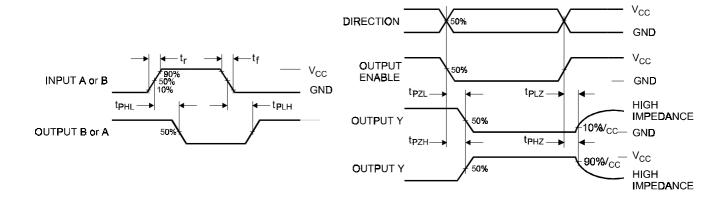
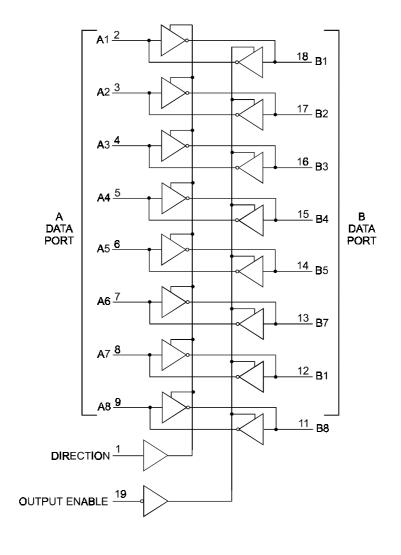



Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

EXPANDED LOGIC DIAGRAM

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.