AN5637

SECAM decoder IC

Overview

The AN5637 is a chroma signal processing circuit for use in SECAM system. It outputs the color difference signal.

Features

- Built-in bell filter, deemphasis circuit
- One point adjustment
- Small number of external components

- Applications

- SECAM system TV

Note) The package of this product will be changed to lead-free type (DIP016-P-0300M). See the new package dimensions section later of this datasheet.

■ Block Diagram

- Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Reference frequency signal/ Ident input pin	8	PLL filter automatic adjustment sample hold pin
2	Bell filter output monitor pin	9	$-(\mathrm{R}-\mathrm{Y})$ output pin
3	Power supply pin	10	$-(\mathrm{B}-\mathrm{Y})$ output pin
4	Black level adjustment voltage input pin	11	Killer voltage monitor pin
5	Black level adjustment reference voltage output pin	12	N.C.
	Grounding pin	13	N.C.
7	Bell filter automatic adjustment sample hold pin	14	N.C.
		16	Sand castle pulse input pin

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	11.0	V
Supply current	I_{CC}	73	mA
Power dissipation ${ }^{* 2}$	P_{D}	777	mW
Operating ambient temperature $^{* 1}$	$\mathrm{~T}_{\mathrm{opr}}$	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature ${ }^{* 1}$	$\mathrm{~T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Note) $* 1: \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ except operating ambient temperature and storage temperature.
$* 2$: Power dissipation of the package at $\mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C}$.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC}	7.2 to 9.9	V

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Power supply | I_{3} | Current when $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$ | 30 | 40 | 50 | mA |
| Supply current | V_{5} | Voltage when $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$ | 2.9 | 3.2 | 3.5 | V |
| Pin voltage | | | | | | |

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input(Pin16)	Typical input : (Pin16) Color bar signal, (Pin15) Sand castle pulse, (Pin1) 4.43362 MHz sine wave $350 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$, V-BLK period					
Input dynamic range	$\mathrm{V}_{\text {DR16 }}$	Composite signal input amplitude range	-	1.0	1.5	V
Chroma signal input amplitude *1	$\mathrm{V}_{\text {ch. } 16}$	Chroma signal input amplitude range	-	-	300	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$
Input impedance	Z_{16}	DC measurement	17	25	33	$\mathrm{k} \Omega$

Bell filter Typical input : (Pin16) 4.0 MHz to 4.6 MHz sine wave $10 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$,
(Pin15) Sand castle pulse,
(Pin1) 4.43362 MHz sine wave 350 mV [p-p], V-BLK period

Bell adjusting voltage	$\mathrm{V}_{\mathrm{ADB}}$	Sample hold pin voltage at bell filter automatic adjustement	2.8	3.9	5	V
Center frequency	f_{OB}	Center frequency of bell filter (Signal period)	4.202	4.262	4.322	MHz
Band width	B	Band width of bell filter (Signal period)	250	310	370	kHz

ACC
Typical input : (Pin16) Color bar signal (Composite) 1 V[p-p],
(Pin15) Sand castle pulse,
(Pin1) 4.43362 MHz sine wave $350 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$, V-BLK period

ACC characteristics 1	ACC1	Output change amount when discrimination signal changes from $150 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$ to $300 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	-6	0	6	$\%$
ACC characteristics 2	ACC2	Output change amount when discrimination signal changes from $150 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$ to $15 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	-6	0	6	$\%$

Demodulator/Output
Typical input : (Pin16) Color bar signal (Composite) $1 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$,
(Pin15) Sand castle pulse,
(Pin1) 4.43362 MHz sine wave 350 mV [p-p], V-BLK period

PLL adjusting voltage	$\mathrm{V}_{\mathrm{ADV}}$	Sample hold pin voltage at PLL automatic adjustement	3.1	3.7	4.3	V
R-Y output amplitude	V_{RY}	Color bar (Composite) signal input $(1 \mathrm{~V}[\mathrm{p}-\mathrm{p}])$	0.85	1.00	1.15	$\mathrm{~V}[\mathrm{p}-\mathrm{p}]$
B-Y output amplitude	V_{BY}	Color bar (Composite) signal input $(1 \mathrm{~V}[\mathrm{p}-\mathrm{p}])$	1.07	1.27	1.47	$\mathrm{~V}[\mathrm{p}-\mathrm{p}]$
Detector output linearity	L_{O}	Color bar (Composite) signal input $(1$ V[p-p] $)$	-6	0	6	$\%$
R-Y/B-Y output ratio	$(\mathrm{R}-\mathrm{Y})(\mathrm{B}-\mathrm{Y})$	Amplitude ratio of V_{RY} and V_{BY}	1.12	1.27	1.42	Times
Black level adjusting voltage ${ }^{* 2}$	$\mathrm{~V}_{\mathrm{AD} 4}$	Pin4 voltage when difference of B-Y black level becomes 0	1.45	2.1	2.75	V
Black level error (R-Y) ${ }^{* 2}$	$\mathrm{f}_{\mathrm{BER}}$	Value referred to input frequency	-	-	10	kHz

Note) $* 1$: Refer to "Explanations of testing method 1"
*2: Refer to "Explanations of testing method 2"

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Demodulator/Output (continued)	Typical input : (Pin16) Color bar signal (Composite) $1 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$, (Pin15) Sand castle pulse, (Pin1) 4.43362 MHz sine wave $350 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$, V-BLK period					
Blanking period output DC voltage	$\mathrm{V}_{\text {BLK }}$	Stable sine wave is necessary in V period (4.4336 MHz)	2.2	2.7	3.2	V
SN ratio *3	S/N	Amplitude ratio when Deviation $=460 \mathrm{kHz} / 0 \mathrm{kHz}$ (Pin10 measurement)	30	-	-	dB
Residual high frequency amplitude	V_{RH}	Harmonic content with 100% white signal input (Pin10 measurement)	-	-	10	mV[p-p]
Output impedance (when SECAM) Pin9	$\mathrm{Z}_{\mathrm{OS} 9}$	DC measurement, Pin $1=5 \mathrm{~V}$	260	460	660	Ω
Output impedance (when non SECAM) Pin9	$\mathrm{Z}_{\text {ON9 }}$	DC measurement, Pin1 $=1.5 \mathrm{~V}$	1	-	-	$\mathrm{M} \Omega$
Output impedance (when SECAM) Pin10	$\mathrm{Z}_{\mathrm{OS} 10}$	DC measurement, Pin $1=5 \mathrm{~V}$	260	460	660	Ω
Output impedance (when non SECAM) Pin10	$\mathrm{Z}_{\mathrm{ON10}}$	DC measurement, Pin1 $=1.5 \mathrm{~V}$	1	-	-	$\mathrm{M} \Omega$

Sand castle pulse	Typical input : (Pin1) 4.43362 MHz sine wave 350 mV [p-p], V-BLK period					
Horizontal and vertical BLK level *4	$\mathrm{V}_{\text {BL }}$	Measurement of slice level of H , V blanking pulse	0.5	1	1.5	V
Burst gate level *5	$\mathrm{V}_{\text {BG }}$	Measurement of slice level of burst gate pulse	3.4	3.9	4.4	V
Reference signal/interface	Typical input : (Pin1) 4.43362 MHz sine wave 350 mV [p-p], V-BLK period					
Reference signal amplitude	$\mathrm{V}_{\text {ref }}$	Amplitude range of sine wave (4.43362 MHz) of Pin1 input	0.20	-	0.50	V[p-p]
System SW discrimination level	$\mathrm{V}_{\text {SS }}$	Voltage when Pin10 becomes open if Pin1 is 5 V to 1 V variable	2.5	3.0	3.5	V

IDENT
Typical input :
: (Pin16) Color bar signal (Chroma), (Pin15) Sand castle pulse,
(Pin1) 4.43362 MHz sine wave $350 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$, V-BLK period

Color On/Off hysteresis	H_{C}	Difference between color turn On or Off and Off to On level	0.5	2	6	dB
Killer sensitivity	K	Color turn Off level when disc- rimination signal changes $150 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$ to $0 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	-	-	-32	dB

Note) *3: Refer to "Explanations of testing method 3"
*4: Refer to "Explanations of testing method 4"
*5: Refer to "Explanations of testing method 5"

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data

Note) The characteristic values below are theoretical values for designing and not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Reference signal/interface						
Sink current	$\mathrm{I}_{\text {SS }}$	Sink current of Pin1 when SECAM signal input	150	175	220	$\mu \mathrm{A}$
Bell filter						
Center frequency power supply voltage dependency	$\begin{aligned} & \Delta \mathrm{f}_{\mathrm{OB}} / \\ & \Delta \mathrm{V}_{\mathrm{CC}} \end{aligned}$	Amount of center frequency fluctuation when $\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}$ to 9.9 V	-	0.23	-	kHz/V
Center frequency ambient temperature dependency	$\begin{gathered} \Delta \mathrm{f}_{\mathrm{OB}} / \mathrm{I} \\ \Delta \mathrm{~T} \end{gathered}$	Amount of center frequency fluctuation when $\mathrm{T}_{\mathrm{a}}=30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	-	0.25	-	kHz/ ${ }^{\circ} \mathrm{C}$
Demodulator/Output						
Output signal bandwidth	B_{S}	Bandwidth of demodulator output signal (Pin9, 10)	-	1.3	-	MHz
Deemphasis pole-frequency	f_{PD}	Automatic adjustment period	-	85	-	kHz
Pole zero point frequency ratio	$\mathrm{f}_{\mathrm{PD} /} \mathrm{f}_{\mathrm{OD}}$	Automatic adjustment period	-	3	-	Times
R-Y output amplitude power supply voltage dependency	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{RY}} / \\ & \Delta \mathrm{V}_{\mathrm{CC}} \end{aligned}$	Fluctuation amount of $\mathrm{R}-\mathrm{Y}$ output amplitude when $\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}$ to 9.9 V	-	1.5	-	\%
R-Y output amplitude ambient temperature dependency	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{RY}} / \\ \Delta \mathrm{T} \end{gathered}$	Fluctuation amount of R-Y output amplitude when $\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	-	0.36	-	$\begin{gathered} \mathrm{mV}[\mathrm{p}-\mathrm{p}] \\ { }^{\circ} \mathrm{C} \end{gathered}$
B-Y output amplitude power supply voltage dependency	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{BY}} / \\ & \Delta \mathrm{V}_{\mathrm{CC}} \end{aligned}$	Fluctuation amount of $\mathrm{B}-\mathrm{Y}$ output amplitude when $\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}$ to 9.9 V	-	2.0	-	\%
B-Y output amplitude ambient temperature dependency	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{BY}} / \\ \Delta \mathrm{T} \end{gathered}$	Fluctuation amount of B-Y output amplitude when $\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	-	0.55	-	$\begin{gathered} \mathrm{mV}[\mathrm{p}-\mathrm{p}] \\ { }^{\circ} \mathrm{C} \end{gathered}$
Black level error ($\mathrm{R}-\mathrm{Y}$) power supply voltage dependency	$\begin{aligned} & \Delta \mathrm{f}_{\mathrm{BER}} / \\ & \Delta \mathrm{V}_{\mathrm{CC}} \end{aligned}$	Fluctuation amount of black level error ($\mathrm{R}-\mathrm{Y}$) when $\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}$ to 9.9 V	-	1	-	kHz/V
Black level error ($\mathrm{R}-\mathrm{Y}$) ambient temperature dependency	$\begin{gathered} \Delta \mathrm{f}_{\mathrm{BER}} / \\ \Delta \mathrm{T} \end{gathered}$	Fluctuation amount of black level error ($\mathrm{R}-\mathrm{Y}$) when $\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	-	50	-	$\mathrm{Hz} /{ }^{\circ} \mathrm{C}$
Black level error (B-Y) power supply voltage dependency	$\begin{aligned} & \Delta \mathrm{f}_{\mathrm{BEB}} / \\ & \Delta \mathrm{V}_{\mathrm{CC}} \end{aligned}$	Fluctuation amount of black level error ($\mathrm{B}-\mathrm{Y}$) when $\mathrm{V}_{\mathrm{CC}}=7.2 \mathrm{~V}$ to 9.9 V	-	2	-	kHz/V
Black level error (B-Y) ambient temperature dependency	$\begin{gathered} \Delta \mathrm{f}_{\mathrm{BEB}} / \\ \Delta \mathrm{T} \end{gathered}$	Fluctuation amount of black level error (B-Y) when $\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	-	90	-	$\mathrm{Hz} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Explanations of testing method

1. Measurement of $\mathrm{B}-\mathrm{Y}$ discrimination signal amplitude
2.

Pin10

Input 100% white signal and adjust the voltage of Pin4 so that $\Delta \mathrm{V}_{\mathrm{B}}$ becomes 0 mV . Let the adjusted voltage be $\mathrm{V}_{\mathrm{AD} 4}$.
And let the value of ΔV_{R} based on input frequency at that time be $f_{B E R}$, black level error ($R-Y$).
3. Calculate by using the value of $\operatorname{Pin} 10(B-Y)$ output amplitude $V_{B Y}$ when the color bar signal (Deviation $=460$ kHz) is input to Pin16 and the value of Pin10 output $\mathrm{V}_{\text {NOISE }}$ when the color bar signal (Deviation $=0 \mathrm{~Hz}$) is input.

$$
\mathrm{S} / \mathrm{N}=20 \log _{10}\left|\mathrm{~V}_{\mathrm{BY}} / \mathrm{V}_{\mathrm{NOISE}}\right|
$$

4. The horizontal and vertical blanking level V_{BL} is determined by the internal stabilizing power supply circuit.
5. The burst gate level V_{BG} is determined by dividing the IC built-in resistor between $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$.

$$
\mathrm{V}_{\mathrm{BG}}=\mathrm{V}_{\mathrm{CC}} \times 3.8 / 9 \text { (typ.) }
$$

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Voltage
1		Reference frequency signal/ Ident input Pin : - Input and output pin for interfacing with AN5192/95. - The circuit becomes non-SECAM mode if DC voltage of Pin1 becomes 3 V or less. - Current of $175 \mu \mathrm{~A}$ sinks into Pin1 in SECAM.	$\begin{gathered} \mathrm{AC}+\mathrm{DC} \\ \mathrm{DC} \\ 1.1 \mathrm{~V} \text { or } 4.4 \mathrm{~V} \\ \mathrm{AC} \\ 350 \mathrm{mV}[\mathrm{p}-\mathrm{p}] \\ \text { or } 0 \end{gathered}$
2		Bell filter output monitor pin	$\begin{gathered} \mathrm{AC}+\mathrm{DC} \\ \mathrm{DC} \\ 4.3 \mathrm{~V} \\ \mathrm{AC} \\ 200 \mathrm{mV}[\mathrm{p}-\mathrm{p}] \\ \square \square \square \square \end{gathered}$
3	-	Power supply pin	DC: 9 V
4		Black level adjustment voltage input pin : - Monitoring -(B-Y) Out (Pin10), adjust Pin4 voltage so that pedestal step difference becomes 0 . (using external volume) - Pin4 voltage is generated by resistor dividing Pin5 voltage so as not to be affected by V_{CC} and temperature fluctuation.	$\begin{gathered} \mathrm{DC} \\ 1.45 \mathrm{~V} \text { to } 2.75 \mathrm{~V} \end{gathered}$
5		Black level adjustment reference voltage output pin	DC : 3.2V

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage
6	-	Grounding pin	DC : 0 V
7		Bell filter automatic adjustment sample hold pin	$\begin{gathered} \mathrm{DC} \\ 2.5 \mathrm{~V} \text { to } 5.0 \mathrm{~V} \end{gathered}$
8		PLL automatic adjustment sample hold pin	$\begin{gathered} \mathrm{DC} \\ 3.6 \mathrm{~V} \text { to } 3.9 \mathrm{~V} \end{gathered}$
$\begin{gathered} 9 \\ 10 \end{gathered}$		Pin9 ; -(R-Y) output pin Pin10; -(B-Y) output pin	$\mathrm{AC}+\mathrm{DC}$ AC $-(\mathrm{R}-\mathrm{Y})$ $\text { DC : } 2.9 \mathrm{~V}$

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	Voltage
11		Killer voltage monitor pin When SECAM more than 4 V When non-SECAM 3 V	$\begin{gathered} \mathrm{DC} \\ 1.5 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{gathered}$
12	-	N.C.	-
13	-	N.C.	-
14	-	N.C.	-
15	(15)	Sand castle pulse input pin	
16		SECAM signal input pin	$\begin{gathered} \mathrm{AC} \\ 1.0 \mathrm{~V}[\mathrm{p}-\mathrm{p}] \end{gathered}$

Application Circuit Example

Note) The following signal is inputted to Pin1 from the AN5192/95.

- System discrimination

1. Pin1 is the input and output pin for the three pieces of information
(1) Reference frequency signal input pin (AC)
(2) System discrimination signal input pin (DC voltage)
(3) SECAM/Non-SECAM discrimination output pin (DC current)

AN5637 System discrimination	Pin1 input DC voltage	Pin1 sink current	Pin9, 10 output
	"H" $(4.6 \mathrm{~V})$	$175 \mu \mathrm{~A}$	Color difference signal output
	"L" $(1.3 \mathrm{~V})$	$175 \mu \mathrm{~A}$	Open
Non-SECAM	"H" $(4.6 \mathrm{~V})$	$0 \mu \mathrm{~A}$	DC voltage output
	"L" $(1.5 \mathrm{~V})$	$0 \mu \mathrm{~A}$	Open

2. Reference frequency signal

The reference frequency signal input for Pin1 is used for the following 4 signals ;
(1) Bell filter automatic adjustement
(2) PLL(VCO) automatic adjustement
(3) Deemphasis automatic adjustement
(4) Ident discrimination

Be sure to input the high precision PAL carrier signal (4.43362 MHz) only in the vertical retrace period.

New Package Dimensions (Unit: mm)

- DIP016-P-0300M (Lead-free package)

(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
(2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
(3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:
- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
(6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
(7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
C. These materials are solely intended for a customer's individual use.

Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

