DATA SHEET

TDA4555
 TDA4556
 Multistandard decoder

Product specification
File under Integrated Circuits, IC02

GENERAL DESCRIPTION

The TDA4555 and TDA4556 are monolithic integrated multistandard colour decoders for the PAL, SECAM, NTSC $3,58 \mathrm{MHz}$ and NTSC $4,43 \mathrm{MHz}$ standards. The difference between the TDA4555 and TDA4556 is the polarity of the colour difference output signals (B-Y) and ($R-Y$).

Features

Chrominance part

- Gain controlled chrominance amplifier for PAL, SECAM and NTSC
- ACC rectifier circuits (PAL/NTSC, SECAM)
- Burst blanking (PAL) in front of 64μ g glass delay line
- Chrominance output stage for driving the 64μ s glass delay line (PAL, SECAM)
- Limiter stages for direct and delayed SECAM signal
- SECAM permutator

Demodulator part

- Flyback blanking incorporated in the two synchronous demodulators (PAL, NTSC)
- PAL switch
- Internal PAL matrix
- Two quadrature demodulators with external reference tuned circuits (SECAM)
- Internal filtering of residual carrier
- De-emphasis (SECAM)
- Insertion of reference voltages as achromatic value (SECAM) in the (B-Y) and (R-Y) colour difference output stages (blanking)

Identification part

- Automatic standard recognition by sequential inquiry
- Delay for colour-on and scanning-on
- Reliable SECAM identification by PAL priority circuit
- Forced switch-on of a standard
- Four switching voltages for chrominance filters, traps and crystals
- Two identification circuits for PAL/SECAM (H/2) and NTSC
- PAL/SECAM flip-flop
- SECAM identification mode switch (horizontal, vertical or combined horizontal and vertical)
- Crystal oscillator with divider stages and PLL circuitry (PAL, NTSC) for double colour subcarrier frequency
- HUE control (NTSC)
- Service switch

QUICK REFERENCE DATA

Supply voltage (pin 13)	$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{13-9}$	typ.	12	V
Supply current (pin 13)	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{13}$	typ.	65	mA
Chrominance input signal (peak-to-peak)	$\mathrm{V}_{15-9(p-p)}$	20 to 200		mV
Chrominance output signal (peak-to-peak)	$\mathrm{V}_{12-9(p-p)}$	typ.	1,6	V
Colour difference output signals (peak-to-peak values)				
TDA4555: -(R-Y); TDA4556: + (R-Y)	$\mathrm{V}_{1-9(p-p)}$	typ.	1,05	$\mathrm{V} \pm 2 \mathrm{~dB}$
TDA4555: -(B-Y); TDA4556: + (B-Y)	$\mathrm{V}_{3-9(p-p)}$	typ.	1,33	$V \pm 2 \mathrm{~dB}$
Sandcastle pulse; required amplitude for				
vertical and horizontal pulse separation	V_{24-9}	typ.	2,5	V
horizontal pulse separation	V_{24-9}	typ.	4,5	V
burst gating	V_{24-9}	typ.	7,7	V

PACKAGE OUTLINE

28-lead DIL; plastic (SOT117); SOT 117-1; 1996 November 27.

Multistandard decoder	TDA4555
	TDA4556

Multistandard decoder

RAtings

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 13)
Voltage range at pins $10,11,17,23,24,25,26,27$, 28 to pin 9 (ground)
Current at pin 12
Peak value
Total power dissipation
Storage temperature range
Operating ambient temperature range
$V_{P}=V_{13-9} \max .13,2 \quad V$
$V_{n-9} \quad 0$ to $V_{P} \quad V$
$\mathrm{I}_{12} \max .8 \quad \mathrm{~mA}$
$\mathrm{I}_{12 \mathrm{M}} \quad \max \quad 15 \quad \mathrm{~mA}$
$P_{\text {tot }} \quad \max \quad 1,4 \quad W$
$\mathrm{T}_{\text {stg }} \quad-25$ to $+150 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}} \quad 0$ to +70 ${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{13-9}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig.1; unless otherwise specified

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Demodulator part (SECAM)					
Colour difference signals (see note 4)					
output voltage (proportional to V_{13-9}) (peak-to-peak value)					
-(R-Y) signal (pin 1)	$V_{1-9(p-p)}$	-	1,05	-	V
- (B-Y) signal (pin 3)	$V_{3-9(p-p)}$	-	1,33	-	V
TDA4556					
+ (R-Y) signal (pin 1)	$V_{1-9(p-p)}$	-	1,05	-	V
+ (B-Y) signal (pin 3)	$V_{3-9(p-p)}$	-	1,33	-	V
Ratio of colour difference output signals					
(R-Y)/(B-Y)	$V_{1 / 3-9}$	-	$0,79^{(1)} \pm 10 \%$	-	
Residual carrier (4 to 5 MHz)					mV
Residual carrier (8 to 10 MHz) (peak-to-peak value)	$V_{1,3-9(p-p)}$	-	20	30	mV
H/2 ripple					
at (R-Y) (B-Y) outputs (pins 1 and 3) (peak-to-peak value) with f_{0} signals	$V_{1,3-9(p-p)}$	-	-	20	mV
D.C. output voltage	$V_{1,3-9}$	-	7,7	-	V
Shift of inserted levels relative to levels					
of demodulated f_{o} frequencies (IC only)	$\Delta \mathrm{V} / \Delta \mathrm{T}(\mathrm{R}-\mathrm{Y})$	-	-0,55	-	mV/K
	$\Delta \mathrm{V} / \Delta \mathrm{T}(\mathrm{B}-\mathrm{Y})$	-	+ 0,25	-	mV/K
HUE control (NTSC)/service switch					
Phase shift of reference carrier					
at $\mathrm{V}_{17-9}=2 \mathrm{~V}$	- ϕ	-	30 (note 2)	-	deg
at $\mathrm{V}_{17-9}=3 \mathrm{~V}$	ϕ	-	0	-	deg
at $\mathrm{V}_{17-9}=4 \mathrm{~V}$	+ ϕ	-	30 (note 2)	-	deg
Input resistance	R_{17-9}	-	5	-	$\mathrm{k} \Omega$
Service position					
Switching voltage (pin 17)					
burst OFF; colour ON (for oscillator adjustment)	V_{17-9}	-	-	0,5	V
HUE control OFF; colour ON (for forced colour ON)	V_{17-9}	6	-	-	V
Crystal oscillator (pin 19)					
For double colour subcarrier frequency input resistance	R_{19-9}	-	350	-	Ω
lock-in-range referred to subcarrier frequency	Δf	± 400	-	-	Hz

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Sandcastle pulse detector (see note 5)					
Input voltage pulse levels (pin 24)					
to separate vertical and horizontal blanking pulses	V_{24-9}	1,2	-		2,0
required pulse amplitude	$\mathrm{V}_{24-9(p-p)}$	2,0	-	V	
to separate horizontal blanking pulse	V_{24-9}	3,2	-	3,0	V
required pulse amplitude	$\mathrm{V}_{24-9(p-p)}$	4,0	-	4,0	V
to separate burst gating pulse	V_{24-9}	6,5	-	5,0	V
required pulse amplitude	$\mathrm{V}_{24-9(p-p)}$	7,7	-	7,7	V
Input voltage during horizontal scanning	V_{24-9}	-	-	V_{P}	V
Input current	$-\mathrm{I}_{24}$	-	-	1,0	V

Notes

1. Value measured without influence of external circuitry.
2. Relative to phase at $\mathrm{V}_{17-9}=3 \mathrm{~V}$.
3. Or not connected.
4. The signal amplitude of the colour difference signals $(R-Y)$ and $(B-Y)$ is dependent on the characteristics of the external tuned circuits at pins 7,8 and 4,5 respectively. Adjustment of the amplitude is achieved by varying the Q-factor of these tuned circuits. The resonant frequency must be adjusted such that the demodulated output frequency (f_{0}) provides the same output level as the internally inserted reference voltage (achromatic value).
5. The sandcastle pulse is compared with three internal threshold levels, which are proportional to the supply voltage.

Multistandard decoder	TDA4555
	TDA4556

APPLICATION INFORMATION

PACKAGE OUTLINE

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ \max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}	$\mathbf{Z} \mathbf{(1)}^{(1)}$ $\mathbf{m a x}$
mm	5.1	0.51	4.0	1.7											
1.3	0.53 0.38	0.32 0.23	36.0 35.0	14.1 13.7	2.54	15.24	3.9 3.4	15.80 15.24	17.15 15.90	0.25	1.7				
inches	0.20	0.020	0.16	0.066 0.051	0.020 0.014	0.013 0.009	1.41 1.34	0.56 0.54	0.10	0.60	0.15 0.13	0.62 0.60	0.68 0.63	0.01	0.067

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT117-1	$051 \mathrm{G05}$	MO-015AH			-	$92-11-17$

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

