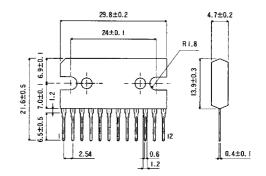
BA3910B

Power supply, standard voltage

The BA3910B is a power supply used in car audio systems.

Features

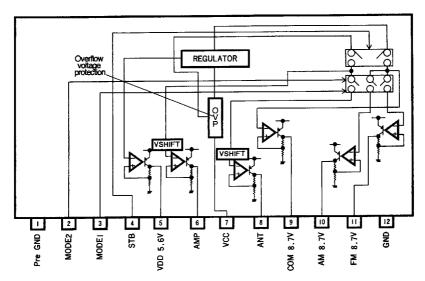

- available in an SIP-M12 package
- multiple voltages available from the same IC
 - 5.6 V (microcontroller)
 - 8.7 V (×3; FM, AM, and COM)
- internal overflow voltage protection circuit provides protection from surges from the ACC or BACKUP supply pins
- all output circuits use a PNP transistor with a low saturation voltage
- internal output overload protection circuit prevents damage to the IC in the event the load is short circuited
- internal thermal overload also protects the IC

Applications

car audio systems

Dimensions (Units : mm)

BA3910B (SIP-M12)

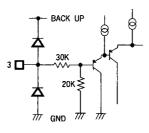


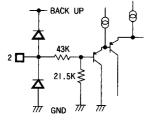
Standard & Memory ICs

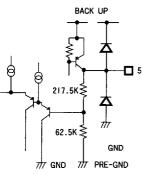
This Material Copyrighted By Its Respective Manufacturer

Block diagram

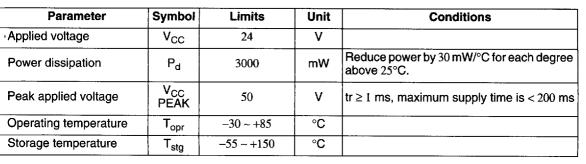
ROHM

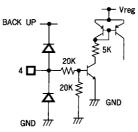

Table 1 Pin description

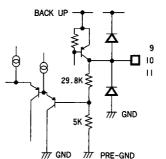

Pin no.	Pin name	Function
1	Pre GND	Small current ground
2	MODE1	AM output, ANT output rise pin
3	MODE2	FM output or AM output switch pin
4	STB	COM output, AMP output rise pin
5	VDD 5.6 V	VDD, 4.5 V output pin
6	AMP	Remote amplifier driving power supply (V _{CC} in series)
7	VCC	Power supply pin
8	ANT	Antenna driving power supply (V $_{\rm CC}$ in series)
9	COM 8.7 V	Common power supply for the power system, electronic synchronization and variable capacitance COM 8.7 V output
10	AM 8.7 V	AM reception power supply, 8.7 V
11	FM 8.7 V	FM reception power supply, 8.7 V output
12	GND	Large current system, substrate GND

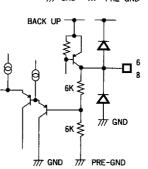

Standard & Memory ICs

This Materia Opyrigh OD 1,216.8.6 spe 2.8.7 Materia acturer






Absolute maximum ratings ($T_a = 25^{\circ}C$)



Standard & Memory ICs

7828999 DDJ2687 JJ6

BA3910B System power supply, BA3900 & BA3910 series

Recommended operating conditions ($T_a = 25^{\circ}C$)

⊢

Parameter	Symbol	Range	Unit
Power supply voltage	V _{CC}	10 ~ 16	V

Electrical characteristics (unless otherwise noted, $T_a = 25^{\circ}C$, $V_{CC} = 13.2$ V) (Sheet 1 of 2)

Parameter	Symbol	Min	Typical	Max	Unit	Conditions	Test figure	
Standby circuit current	I _{st}		0.55	0.80	mA	Stand by $pin = 0 V$	2	
Output 1 (V _{DD})	<u> </u>	£	_ <u></u>					
Output voltage	V ₀₁	5.30	5.60	5.90	V	l ₀₁ = 80 mA		
Line regulation	ΔV ₀₁₁		100	200	mV	Back up= 10 ~ 16 V, I _{O1} = 80 mA	2	
Load regulation	ΔV _{O12}		30	150	mV	I _{O1} = 0 ~ 80 mA	2	
Dropout voltage	ΔV ₀₁₃		0.3	0.7	V	I _{O1} = 80 mA		
Output current	I ₀₁	100	150		mA	V _{O1} ≥ 5.3 V		
Ripple rejection ratio	R.R ₁	43	47		dB	$f = 100 \text{ Hz}, \text{ V}_{\text{RR}} = -10 \text{ dBV}$	3	
Output 2 (COM)					<u></u>			
Output voltage	V _{O2}	8.25	8.70	9.15	V	I _{O2} = 120 mA		
Line regulation	ΔV _{O21}		100	200	mV	$V_{CC} = 10 \sim 16 \text{ V},$ $I_{O2} = 120 \text{mA}$	2	
Load regulation	ΔV _{O22}		50	180	mV	$I_{O2} = 0 - 120 \text{ mA}$	2	
Dropout voltage	ΔV_{O23}		0.4	0.7	V	$I_{O2} = 120 \text{ mA}$		
Output current	I ₀₂	150	200		mA	V _{O2} ≥ 8.25 V		
Ripple rejection ratio	R.R2	40	45		dB	$f = 100 \text{ Hz}, \text{ V}_{\text{RR}} = -10 \text{ dBV}$	3	
Output 3 (AMP)				<u></u>				
Line regulation	ΔV_{O31}		0.5	0.9	V	I _{O3} = 400 mA		
Load regulation	ΔV_{O32}		300	600	mV	$I_{O3} = 0 - 400 \text{ mA}$	2	
Output current	1 ₀₃	500	650		mA	V _{O3} ≥ 12.3 V]	
Output 4 (ANT)		h	• • • • • •					
Line regulation	ΔV _{O41}		0.5	0.9	V	I _{O4} = 400 mA		
Load regulation	ΔV _{O42}		300	600	mV	$l_{O4} = 0 \sim 400 \text{ mA}$	2	
Output current	I ₀₄	500	650		V	I _{O4} ≥ 12.3 V		

				iea, la	= 25°C,	$V_{CC} = 13.2 \text{ V}$ (Sheet 2	-			
Parameter	Symbol	Min	Typical	Max	Unit	Conditions	Test figure			
tput 5 (AM)					<u> </u>					
put voltage	V _{O5}	8.25	8.70	9.15	V	$I_{O5} = 120 \text{ mA}$	2			
e regulation	ΔV_{O51}		100	200	mV	$V_{CC} = 10 \sim 16 \text{ V},$ $I_{O5} = 120 \text{ mA}$				
d regulation	ΔV_{O52}		50	180	mV	I _{O5} = 9 ~ 120 mA				
pout voltage	ΔV_{O53}		0.4	0.7	V	$I_{05} = 120 \text{ mA}$				
put current	1 ₀₅	150	200		mA	V _{O5} ≥ 8.25 V				
ple rejection ratio	R.R5	40	45		dB	$f = 100 \text{ Hz}, \text{ V}_{\text{BB}} = -10 \text{ dBV}$	3			
put 6 (FM)			•*1		L					
out voltage	ΔV_{O6}	8.25	8.70	9.15	V	I _{O6} = 200 mA	2			
regulation	ΔV _{O61}		100	200	mV	$V_{CC} = 10 \sim 16 \text{ V},$ $I_{O6} = 200 \text{ mA}$				
d regulation	ΔV ₀₆₂		50	180	mV	$I_{O6} = 0 \sim 200 \text{ mA}$				
pout voltage	ΔV _{O63}		0.4	0.7	V	I _{O6} = 200 mA				
out current	1 ₀₆	250	350		mA	V _{O6} ≥ 8.25 V				
ole rejection ratio	R.R6	40	45		dB	$f = 100 Hz, V_{RR} = -10 dBV$	3			
ndby input			· · ·							
ndby level	V _{th1-1}			1.1	V					
/e level	V _{th1-2}	1.7			V		2			
t current, high	l _{int}	100	175	250	μA	V _{th1} = 5 V				
le 2 SW input			1I							
idby level	V _{th2-1}	-		1.6	V		2			
/e level	V _{th2-2}	2.4	1 1		٧					
t current, high	l _{in2}	40	90	140	μA	$V_{th2} = 5 V$				
e 1 SW input			•	d						
ON level	V _{th3-1}			1.1	V		T			
DN level	V _{th3-2}	2.7			V		2			
t current, HIGH	l _{in3}	50	100	150	μĀ	$V_{\text{th3}} = 5 \text{ V}$				

System power supply, BA3900 & BA3910 series BA3910B

ctrical characteristics (unless otherwise noted. $T_a = 25^{\circ}C$. $V_{ac} = 13.2$ V) (Sheet 2 of 2)

Note: Ensure circuit output current is less than the maximum value

dard & Memory ICs

This Material Copyrighted By Its Respective Manufacturer

Test circuits

Figure 2 Test circuit for each pin

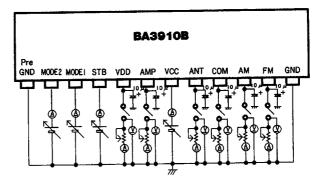
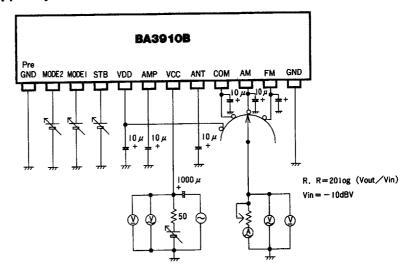
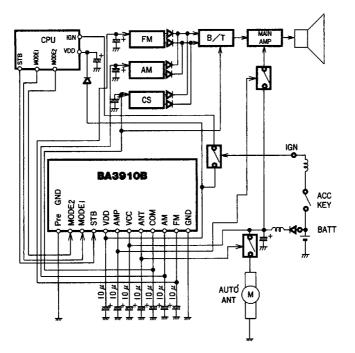




Figure 3 Ripple rejection rate test circuit

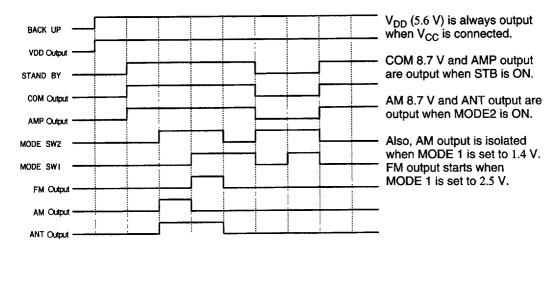
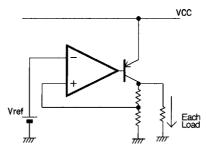

ROHM

Figure 4 Application example

cuit operation

Figure 5 Timing chart



idard & Memory ICs

ROHM

TIM Mat 202 6099 ight of 09 25 Respective Manufacturer

Figure 6 Determining maximum power consumption (P_{max})

Power consumed by V_{DD} (5.6 V)

$$P_1 = (A - 5.6) \times I_1 + \left(\frac{I_1}{20} + \frac{I_1}{10}\right)A$$

Power consumed by COM8.7 V

 $P_2 = (A - 8.7) \times I_2 + \left(\frac{I_2}{30} + \frac{I_2}{10}\right)A$

Power consumed by AMP

$$P_3 = (0.5 \times I_3) \times I_2 + \left(\frac{I_3}{100} + \frac{I_3}{10}\right) A$$

Power consumed by ANT

$$P_4 = (0.5 \times I_4) \times I_2 + \left(\frac{I_4}{100} + \frac{I_4}{10}\right) A$$

Power consumed by AM8.7 V

$$P_5 = (A - 8.7) \times I_5 + \left(\frac{I_5}{30} + \frac{I_5}{10}\right) A$$

Power consumed by FM8.7 V

$$P_6 = (A - 8.7) \times I_6 + \left(\frac{I_6}{50} + \frac{I_6}{10}\right)A$$

Power consumed internally by each circuit (circuit current $\cong 5$ mA)

 $P_7 = V_{CC} \times \text{circuit current}$

$$\begin{split} P_{max} &= P_1 + P_2 + P_3 + P_4 + (P_5 \text{ or } P_6, \text{ whichever is larger}) + \\ \text{where } A &= \text{maximum output voltage for } V_{CC} \\ I_1 &= \text{maximum output current for } V_{SS} \\ I_2 &= \text{maximum output current for COM} \\ I_3 &= \text{maximum output current for AMP} \\ I_4 &= \text{maximum output current for ANT} \\ I_5 &= \text{maximum output current for FM} \end{split}$$

Precautions for use

Application example

The application circuit in Figure 4 is recommended for use. Make sure to confirm the adequacy of the characteristics. When using the circuit with changes to the external circ constants, make sure to leave an adequate margin for external components including st and transitional characteristics as well as dispersion of the IC. Note that ROHM cannot provide adequate confirmation of patents.

Operating power supply

When operating at normal voltages and at ambient temperature, most circuit functions a guaranteed. The characteristic values cannot be absolutely guaranteed for all paramete However, there are no sudden changes of the characteristics within these ranges.

Voltage overload protection circuit

The voltage overload protection circuit turns OFF the output when the potential difference between V_{CC} (pin 7) and GND (pin 12) exceeds about 26 V (at normal temperature). Make sure to use the IC within this range.

Preventing oscillation at each output and the ripple filter capacitor

To prevent oscillation, connect a capacitor between the V_{DD} (pin 5), AMP (pin 6), ANT (pin 8), COM (pin 9), AM (pin 10), and FM (pin 11) output pins and the GND. ROHM recommends using a tantalum capacitor with a low thermal characteristic.

Current overload protection circuit

A current overload protection circuit is installed on the V_{DD} (pin 5), AMP (pin 6), ANT (pin 8), COM (pin 9), AM (pin 10), and FM (pin 11) outputs based on their respective current capacity. This prevents damage to the IC in the event that the load is short circuited.

This protection circuit limits the current in the form of a "7" (see Figures 8 and 9). It is designed with a margin so that even if a large current suddenly flows through the large capacitor in the IC, the current is restricted and latching is prevented.

However, these protection circuits are only good for preventing accidental damage. Make sure your design does not cause the protection circuit to operate continuously (for instance: clamping at an output of 1 Vf or greater: below 1 Vf, the overload circuit operates). The capacitor has negative temperature characteristics.

Thermal overload

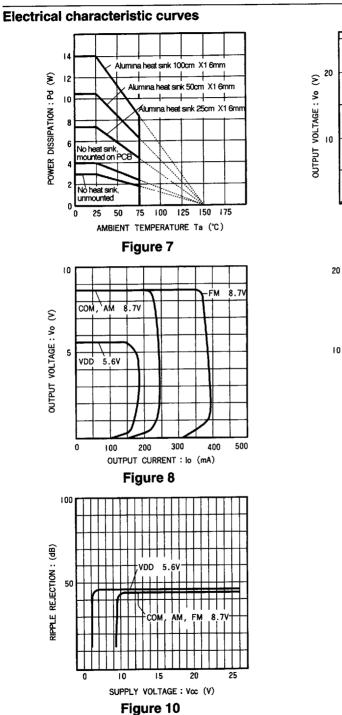
A thermal overload circuit is installed to prevent thermal damage. When the thermal overload circuit operates, all outputs, except V_{DD} , are put in the OFF state. When the temperature drops about 25°C, the circuit is restored.

Circuit structure of each output

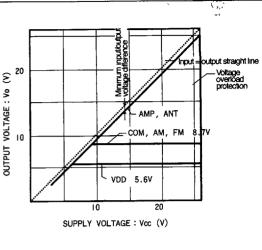
The V_{DD} (pin 5), AMP (pin 6), ANT (pin 8), COM (pin 9), AM (pin 10), and FM (pin 11) outputs consist of PNP power transistors. A protection circuit ensures that when the V_{CC} (pin 7) voltage falls, the IC is not damaged, even if the output voltage from the external output capacitor is greater than the V_{CC} voltage.

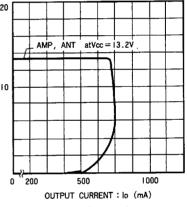
Grounding

The ground shown in the application circuit has an adequately short pattern for the GND (pin 12) pin. Make sure to arrange these traces and other outputs in a pattern that prevents mutual interference.


ASO

Although this IC has many types of protection circuits built in, the ASO may still be exceeded under certain conditions. When ASO is exceeded, the IC will be destroyed. Be careful never to exceed the ASO.


Standard & Memory ICs


ROHM

、考

ROHM

Standard & Memory IC.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.