TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

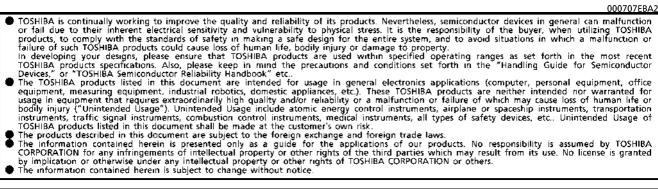
T A 8 6 9 0 A N

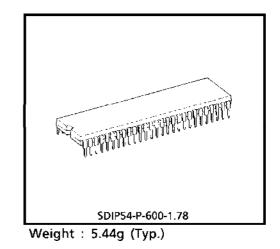
PAL/NTSC DUAL MODE COLOR TV SINGLE CHIP SIGNAL PROCESSING IC

The TA8690AN is provided with the circuit of PIF, SIF, video, chroma, deflection. And the package the small DIP (shrink DIP with 54pins). With this item, the PAL/NTSC Dual Mode Color TV is to be composed of fewer components, and with small area.

FEATURES

PIF stage


- 3 Stage Variable Gain IF AMP
- High Speed response AGC (peak AGC) with dual time constants
- Single end AFT output with defeat function
- RF delay AGC output (Reverse AGC)
- internal black/white noise inverter

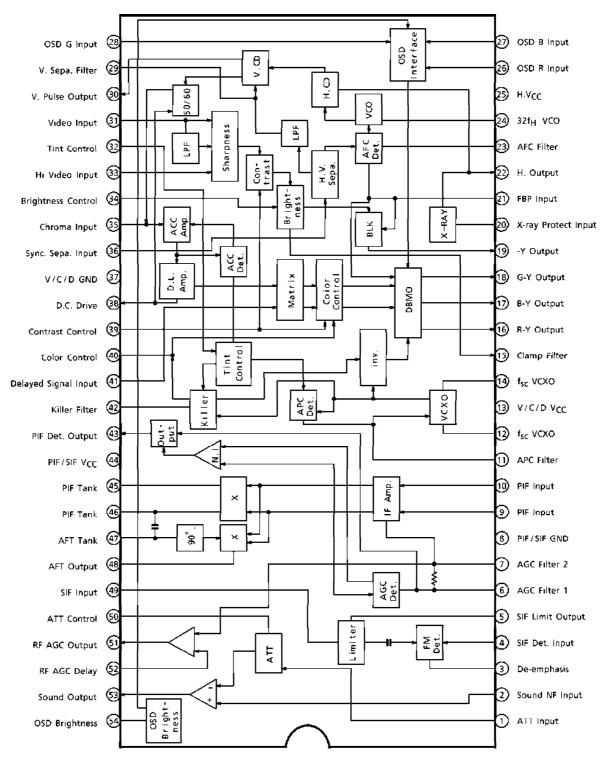

SIF stage

- Quadrature FM Detection Circuit
- Adjustment free Detection Circuit with ceramic discriminater
- High performance electronic attenuater circuit
- NF Preamplifier Circuit

Video stage

- Secondary Differential Picture Sharpness Circuit
- Contrast Control with Uni-color function
- Brightness Control with Pedestal Clamp Circuit
- Internal Blanking Circuit

000707EBA2


Chroma stage

- ACC Circuit
- Color Control Circuit
- Uni-Color Control Circuit
- Color Differtencial output
- Adjustment free APC Circuit
- Killer Circuit
- OSD interface with Brightness control
- PAL/NTSC system SW
- TINT Control Circuit at NTSC Mode

Deflection stage

- High performance sync. separation circuit
- Adjustment free Countdown system
- AFC Circuit
- Flyback pulse input with sync. output
- Horizontal Pre-Drive Output
- X-ray Protection Circuit
- Vertical Pulse Output
- 50Hz/60Hz auto detector
- 50Hz/60Hz manual SW

BLOCK DIAGRAM

TERMINAL FUNCTION

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
1	ATT Input	Input terminal for audio amplifier.	3. BV 60kD
2	Sound NF Input	NFB terminal for audio amplifier.	
3	De-emphasis	A SIF detection de-emphasis capacitor is connected.	3.8V 30kΩ
4	SIF Det. Input	A 4.5MHz tuned tank circuit is connected. The detector muting function is on when this terminal is connected to GND.	
5	SIF Limit Output	A sound carrier output to drive SIF tuned tank coil circuit.	

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT		
6 7	AGC Filter 1 AGC Filter 2	Pins 6 and 7 are AGC time constant terminals. A dual time constant system is adopted in order to achieve a high speed response.			
8	PIF/SIF GND	GND terminal for pin 39 V _{CC} .	_		
9 10	PIF Input	PIF signal input terminal. Input impedance : 2.5k Ω Typ.			
11	APC Filter	APC filter time constant is connected. When killer works, automatic search circuit operates in order to widen the pull-in range. The search speed is also determined by the external filter time constant.			
12 14	f _{sc} VCXO	A f _{sc} X'tal is connected between pins 11 and 13. Pin is a drive output and pin is an input.	$ \begin{array}{c} $		

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
13	V/C/D V _{CC}	V _{CC} terminal for Video, Chroma, Deflection.	_
15	Clamp Filter	A terminal for a pedestal clamp capacitor.	
16 17 18	R-Y Output B-Y Output G-Y Output	Color differential signal outputs.	16 17 18 50Ω 7 7 7 7 7 7
19	-Y Output	The output terminal of video signal which is processed by vertical blanking and horizontal blanking.	
20	X-ray Protect Input	The input terminal of the X- ray protector. Pin 21 horizontal drive terminal turns to low when the input voltage of this terminal exceeds the specified threshold voltage, 1.3V Typ.	
21	FBP Input	Input terminal for fly back pulse to horizontal AFC circuit (the integrator circuit for a sawtooth wave is provided internally). Pin 21 terminal voltage is clamped to 4.2V during Sync. pulse period.	200Ω × × × × × × × × × × × × ×

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
22	H. Output	Horizontal output terminal (emitter follower). Amplitude : 5.0V _{p-p} (Typ.) Duty : 43% (Typ.)	
23	AFC Filter	AFC filter is connected.	
24	32f _H VCO	Adjustment free 32f _H oscillator. A ceramic resonater is connected.	
25	H.V _{CC}	V _{CC} for Horizontal Deflection. H.V _{CC} = 9V (Typ.) made by external parts.	_
26 27 28	OSD R Input OSD B Input OSD G Input	OSD (On Screen Display) signal input terminal. OSD switch circuit is enabled by sink current at the input terminal (0.3mA Typ.)	$\begin{array}{c} & & & \\ 26 \\ 27 \\ 28 \end{array} \xrightarrow{50\Omega} \\ & &$
29	V. Sepa. Filter	Vertical sync. separation filter is connected.	

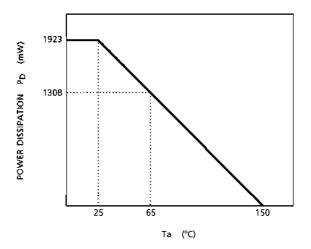
PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
30	V. Pulse Output	Vertical pulse output terminal. (10H width positive pulse)	
31	Video Input	Input terminal of delayed video signal, 1V _{p-p} (Typ.).	6.5k ^Ω 2v
32	Tint Control	The terminal for tint control. And also PAL/NTSC SW. PIN MODE 0.7V + NTSC 0.7V - PAL	
33	Hi Video Input	The second order differential video signal input terminal and the picture sharpness control terminal.	33 40κΩ 15pF 1

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT		
34	Brightness Control	Brightness control terminal.			
35	Chroma Input	Chroma signal input terminal. Recommendable input burst signal level is 100mV _{p-p} . 50Hz / 60Hz Detect out 60Hz : 1.2V 50Hz : 5.0V	33 100Ω 30pF 30pF 50/60 50/60		
36	Sync. Sepa. Input	Video signal input for H/V sync. separator. Automatic slicer (slice level is approximately 50% of sync. signal) is adopted.			
37	V/C/D GND	GND for Video/Chroma/ Deflection.	—		
38	D.C. Drive	The chroma signal output for a 1H delay line driving.	30 m W W W W W W W W W W W W W W W W W W W		

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT			
39	Contrast Control	Video gain and color gain are controlled by this terminal simultaneously. When the terminal pin 39 Voltage is set to 1.4V~GND, V-out is stop and Contrast Control is min.				
40	Color Control	Color saturation control terminal. When the color killer circuit operates, this terminal voltage turns low.				
41	Delayed Signal Input	1H delayed chroma signal input. The signal phase shift between pins 38 and 41 should be less than 5 deg. The signal loss of the 1H delay line should be 16dB. 50Hz Mode : 3.0V 60Hz Mode : 6.0V				

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
42	Killer Filter	A capacitor for an ident filter is connected. For B/W signal, the terminal voltage of pin 42 is around 8V. When color signal is applied, an ident is correct the terminal voltage goes high whereas it goes low during incorrect ident.	V _{CC} 42 42 4300Ω 300Ω 4 300Ω 4 4 300Ω 4 4 300Ω 4 4 300Ω 4 4 4 300Ω 4 4 4 4 4 4 4 4
43	PIF Det. Output	An output terminal for detected video signal.	
44	IF V _{CC}	V _{CC} for PIF/SIF.	—
45 46	PIF Tank	Terminals for a video Det. tank circuit.	
47	AFT Tank	A single ended turned tank is connected. To defeat AFT, this terminal is GNDed by a 10kohm resister.	

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT
48	AFT Output	AFT output terminal. AFT center voltage is determined by V _O .	
49	SIF Input	SIF signal input terminal.	
50	ATT Control	Volume control terminal. Controlled by 0 to 5V DC, suitable for μ -computer control interface. A linear taper potentiometer can be used. The Typ. attenuation range is 80dB.	
51	RF AGC Output	An open collector output for RF AGC. The gain is determined by an external load resister.	
52	RF AGC Delay	The delay point of RF AGC is set by an applied external voltage.	
53	Sound Output	Emitter follower output for an audio output stage.	20v 0051 0


PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT		
54	OSD Brightness	OSD signal brightness control terminal.			

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Power Supply Voltage	Vcc	15	V
Power Dissipation	PDmax	1923 (Note)	mW
Input Signal Voltage	ein	5	V _{p-p}
Operating Temperature	T _{opr}	-20~65	°C
Storage Temperature	T _{stg}	- 55~150	°C

(Note) When using the device at above $Ta = 25^{\circ}C$, decrease the power dissipation by 15.4mW for each increase of 1°C.

PD vs Ta CURVE

RECOMMENDED OPERATING CONDITION

PIN No.	PIN NAME	SYMBOL	MIN.	TYP.	MAX.	UNIT
13	V/C/D V _{CC}	V ₁₃	8.5	9.0	9.5	V
25	H.V _{CC}	V ₂₅	8.5	9.0	9.5	V
44	PIF/SIF V _{CC}	V44	8.5	9.0	9.5	V

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS DC voltage characteristics (Unless otherwise specified, $V_{CC} = 9V$, $H.V_{CC} = 9V$, $Ta = 25^{\circ}C$)

PIN No.	PIN NAME	SYMBOL	TEST CIRCUIT	MIN.	TYP.	MAX.	UNIT
1	ATT Input	V1	—	3.3	3.8	4.5	V
2	Sound NF Input	V2	_	3.2	3.9	4.5	V
3	De-emphasis	V3	—	3.3	3.8	4.5	V
4	SIF Det. Input	V4	_	2.4	2.8	3.3	V
5	SIF Limit Output	V5	_	3.0	3.6	4.2	V
6	AGC Filter 1	V ₆	_	7.8	8.5	9.0	V
7	AGC Filter 2	V7	_	7.9	8.5	8.9	V
9	PIF Input	Vg	_	3.3	3.9	4.3	V
10	PIF Input	V10	_	3.3	3.9	4.3	V
11	APC Filter	V ₁₁	—	2.8	4.5	4.9	V
12	f _{sc} VCXO	V ₁₂	_	4.3	5.2	6.1	V
14	f _{sc} VCXO	V ₁₄	_	5.3	6.4	7.2	V
15	Clamp Filter	V ₁₅	V ₃₄ = 4.5V	2.4	3.2	4.1	V
16	R-Y Output	V ₁₆	_	4.8	5.5	6.0	V
17	B-Y Output	V ₁₇	_	4.8	5.5	6.0	V
18	G-Y Output	V ₁₈	_	4.8	5.5	6.0	v
19	-Y Output	V ₁₉	_	_	_	_	v
20	X-ray Protect Input	V ₂₀	_	—	_	_	V
21	FBP Input	V ₂₁	_	_		_	V
22	H. Output	V ₂₂	—	_	_	_	V
23	AFC Filter	V ₂₃	—	6.7	7.3	8.7	V
24	32f _H VCO	V ₂₄	_	3.1	5.2	6.3	V
26	OSD R Input	V ₂₆	—	1.3	1.9	2.3	V
27	OSD B Input	V27	_	1.3	1.9	2.3	V
28	OSD G Input	V28	_	1.3	1.9	2.3	V
29	V. Sepa. Filter	V29	H.V _{CC} : Open	3.8	4.5	5.9	V
30	V. Pulse Output	V30	—	4.5	5.0	5.5	V
31	Video Input	V31	—	1.8	2.8	4.0	V
32	Tint Control	V ₃₂	_	4.0	4.5	4.9	V
33	Hi Video Input	V ₃₃	_	4.3	5.5	7.5	V
34	Brightness Control	V34	l _{in} = 20μΑ	2.6	3.8	5.1	V
35	Chroma Input	V35		4.1	5.0	5.7	V
36	Sync. Sepa. Input	V36	_	1.8	2.1	3.7	V
38	D.C. Drive	V38	—	6.5	7.2	8.2	V
39	Contrast Control	V39	_	4.3	5.2	5.6	V
40	Color Control	V ₄₀	—	3.9	4.5	4.9	v
41	Delayed Signal Input	V ₄₁	_	3.5	4.5	4.9	V
42	Killer Filter	V ₄₂	—	3.3	3.8	4.1	V
43	PIF Det. Output	V43	_	4.0	4.5	5.0	V

PIN No.	PIN NAME	SYMBOL	TEST CIRCUIT	MIN.	TYP.	MAX.	UNIT
45	PIF Tank	V45	—	6.0	6.6	7.2	V
46	PIF Tank	V46	—	6.0	6.6	7.2	V
47	AFT Tank	V47	—	2.4	3.0	3.6	V
48	AFT Output	V48		2.0	4.5	6.0	V
49	SIF Input	V49	—	2.4	3.0	3.7	V
50	ATT Control	V50	—	—	—	—	V
51	RF AGC Output	V51	—	—	—	_	V
52	RF AGC Delay	V52	_	5. 6	6.2	6.6	V
53	Sound Output	V ₅₃	—	3.2	4.1	4.6	V
54	OSD Brightness	V54	—	_	—	—	V

DC current characteristics (Unless otherwise specified, $V_{CC} = 9V$, $H.V_{CC} = 9V$, $Ta = 25^{\circ}C$)

PIN No.	PIN NAME	SYMBOL	TEST CIRCUIT	MIN.	TYP.	MAX.	UNIT
13	V/C/D V _{CC}	l ₁₃	—	25	50	75	mA
25	H.V _{CC}	¹ 25	_	7	13.5	21	mA
44	PIF/SIF V _{CC}	I44		25	43.5	60	mA

AC CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 9V$, $H.V_{CC} = 9V$, $Ta = 25^{\circ}C$) PIF stage

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Sensitivity		1	(Note 1)	34	40	46	dBμV
Maximum IF Input Level		1	(Note 2)	100	111	-	dBµV
IF AGC Range	ΔA	1	(Note 3)	60	71	—	dB
Differential Gain	DG	1	(Note 4)	— —	_	10	%
Differential Phase	DP	1	(Note 4)	—	—	7	۰
No-Signal Level	V ₀	1	(Note 5)	4.1	4.5	4.8	V
Sync. Tip Level	VSYNC	1	(Note 6)	2.2	2.4	2.7	V
Video Output Level	VOUT	1	(Note 6)	1.4	1.8	2.1	V _{p-p}
Video Frequency Characteristic	fv	1	(Note 7)	6.0	8.3	_	MHz
White Noise Inverter Level	Vwтн	1	(Note 8)	5.1	5.4	5.7	V
White Noise Clamp Level	VwcL	1	(Note 8)	3.6	3.9	4.2	V
Black Noise Inverter Level	VBTH	1	(Note 8)	1.2	1.8	2.1	V
Black Noise Clamp Level	V _{BCL}	1	(Note 8)	3.2	3.5	4.0	V
Carrier Suppression Ratio	CL	1	(Note 9)	40	58	—	dB
Harmonic Suppression Ratio	l2nd	1	(Note 9)	40	44	_	dB
AFT Sensitivity	∆f/∆V	1	(Note 10)	15	23	30	kHz / V
	A	1	(Note 10)	6.0	8.7	—	V
AFT Characteristics	B/A	1	(Note 10)	20	35	55	%
	C/A	1	(Note 10)	25	28	30	%
AFT Center Voltage	V43 (0)	1	(Note 11)	3.5	4.5	5.5	V
No Signal Offset	∆V43	1	(Note 11)	- 1.5	0	1.5	v
Intermodulation	I920	1	(Note 12)	32	47	—	dB
Input Impedance	Z _{IN}	1	(Note 13)	1.75	2.5	3.25	kΩ

SIF stage

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
FM Detection Output Level	VOD	1	(Note 14)	150	230	350	mV _{rms}
Input Limiting Sensitivity	VIN	1	(Note 15)	—	34	45	dBμV
AM Rejection Ratio	AMR	1	(Note 16)	30	53	—	dB
Band Width (3dB)	±⊿f _G	1	(Note 17)	150	300	—	kHz
THD Band Width (1.5%)	±⊿f _D	1	(Note 18)	150	230	_	kHz
ATT AC Gain	GATT	1	(Note 19)	3.0	5.0	8.0	dB
ATT Max. Attenuation Volume	GATTMAX	1	(Note 20)	65	80	_	dB
AF Amp AC Gain	GV AF	1	(Note 21)	16	20	23	dB

Video stage

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Y Input Impedance	INP	2	(Note 22)	11	15	20	kΩ
SHR Input Impedance	SHR INP	2	(Note 23)	11	15	20	kΩ
Y Input Dynamic Range	DynY	2	(Note 24)	2.0	3.0	—	V _{p-p}
SHR Input Dynamic Range	DynSHR	2	(Note 25)	0.3	0.5	—	V _{p-p}
Max. Video Output Level	Ymax	2	(Note 26)	8.0	8.4	9.0	V
Min. Video Output Level	Y _{min}	2	(Note 26)	—	0.3	0.7	V
Video Output Drive Current	Y _{lsink}	2	(Note 27)	1.3	2.0	3.0	mA
Video AC Gain	GY	2	(Note 28)	9	12	15	dB
SHR AC Gain	GSHR	2	(Note 29)	25	30	35	dB
Video Frequency Characteristic	f _Y	2	(Note 30)	6.8	8.0	_	MHz
Brightness Control Sensitivity	GBRT	2	(Note 31)	2.0	3.0	4.0	
Brightness Control Voltage	VBRT	2	(Note 32)	3.5	4.0	4.5	v
DC Restoration	T _{DC}	2	(Note 33)	95	99	—	%
Clamp Terminal Voltage	VCLAMP	2	(Note 34)	2.5	3.3	3.8	V
Contrast Control Voltage	∆VCONT	2	(Note 35)	1.0	1.25	1.5	V
Contrast Gain Variable Range	⊿GCONT	2	(Note 35)	11	17	19	dB
Frequency Response Dependence on Contrast Control	⊿Gf _{CONT}	2	(Note 36)	_	0.7	1.2	dB
Picture Control Gain Range	⊿GSHR	2	(Note 37)	20	25	—	dB
Picture Control Voltage Range	⊿Vshr	2	(Note 38)	0.9	1.2	1.5	V
V-BLK Pulse Output Level	VVBLK	2	(Note 39)	8.5	—	—	v
H-BLK Pulse Output Level	VHBLK	2	(Note 39)	8.5	—	_	v
V-BLK Pulse Width (50Hz)	VPVBLK50	2	(Note 39)	—	21	_	н
V-BLK Pulse Width (60Hz)	VPVBLK60	2	(Note 39)	—	16	—	Н
Delay of H-BLK Pulse Input	^t DBS	2	(Note 39)	—	—	0.5	μs

Chroma stage

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	ea	3	(Note 40)	0.5	0.85	—	V _{p-p}
ACC Characteristic	Α	3	(Note 40)	0.9	1.0	1.2	Ratio
Unicolor Control Voltage Range	⊿YUNI	3	(Note 41)	0.8	1.2	1.6	V
Unicolor Control Gain Range	⊿GUNI	3	(Note 41)	20	_	—	dB
Unicolor Control Phase Change	Δθυνι	3	(Note 42)	_	—	±5	°
Color Control Voltage Range	⊿V _{COL}	3	(Note 43)	0.8	1.2	1.6	V
Color Control Gain Range	⊿GCOL	3	(Note 43)	20	—	_	dB
Color Control Phase Change	Δθςοι	3	(Note 44)	_	—	±5	\$
Color Control Residual	ec	3	(Note 45)	_	—	30	mV _{p-p}
Tint Control Voltage Range	AVTIN	3	(Note 46)	0.8	1.5	2.5	V
Tint Control Phase Range	Δθ ₃₋₁	3	(Note 46)	35	50	—	0
(3.58MHz)	Δθ3-2	3	(Note 46)	35	50	_	0
Tint Control Phase Range	Δθ4-1	3	(Note 46)	35	50	_	•
(4.43MHz)	Δθ4-2	3	(Note 46)	35	50		Ŷ
PAL/NTSC SW Voltage	VP/N	3	(Note 47)	0.4	0.7	1.0	V
Killer Sensitivity (3.58MHz)	eb	3	(Note 48)	—	1.0	3.0	mV _{p−p}
Killer Sensitivity (4.43MHz)	eb	3	(Note 48)	—	1.0	3.0	mV _{p-p}
	VKIL1	3	(Note 49)	4.5	4.8	5.1	v
Killer Voltage	VKIL2	3	(Note 49)	3.8	4.1	4.4	V
Ident Sensitivity	ei	3	(Note 50)	-	1.0	3.0	mV _{p-p}
	VID1	3	(Note 51)	5.3	5.6	5.9	V
ldent Voltage	VID2	3	(Note 51)	2.7	3.0	3.3	V
APC Pull-In Range H		3	(Note 52)	400	500	_	Hz
(3.58MHz) L	∆f _{3PL}	3	(Note 52)	500	1000	—	Hz
APC Hold Range H		3	(Note 52)	—	500	—	Hz
(3.58MHz) L	∆f3HL	3	(Note 52)	_	500	_	Hz
APC Pull-In Range H	-	3	(Note 52)	300	500	_	Hz
(4.43MHz) L	∆f4PL	3	(Note 52)	500	1000	_	Hz
APC Hold Range H		3	(Note 52)	-	500	_	Hz
(4.43MHz) L		3	(Note 52)	_	500	_	Hz
Frequency Sensitivity (3.58MHz)	β3	3	(Note 53)	—	1.5	_	Hz/V
Frequency Sensitivity (4.43MHz)	β4	3	(Note 53)	—	0.9	_	Hz/V
· · ·		3	(Note 54)	2.9	3.6	4.3	V _{p-p}
Demodulation Color		3	(Note 54)	1.7	2.1	2.5	Vp-p
Differential Output B		3	(Note 54)	3.3	4.0	4.7	V _{p-p}
		3	(Note 55)	4.8	5.5	6.2	V _{p-p}
Max. Demodulation Color G	10/104/3	3	(Note 55)	3.0	3.4	3.8	Vp-p
Differential Output B	Gillan	3	(Note 55)	4.8	5.5	6.2	V _{p-p}

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Demodulation Relative	R / B	NV _R /V _B	3	(Note 56)	0.8	0.9	1.1	Ratio
Amplitude (NTSC)	G/B	NV_G/V_B	3	(Note 56)	0.28	0.32	0.48	Ratio
Demodulation Relative	R/B	PV_R/V_B	3	(Note 56)	0.43	0.58	0.70	Ratio
Amplitude (PAL)	G/B	PVG/VB	3	(Note 56)	0.27	0.37	0.46	Ratio
Demodulation Relative	R-B	$N\theta_{R-B}$	3	(Note 56)	100	110	120	0
Phase (NTSC)	G-B	$N\theta G-B$	3	(Note 56)	225	235	245	0
Demodulation Relative	R-B	Р $ heta_{ extbf{R}- extbf{B}}$	3	(Note 56)	78	95	96	\$
Phase (PAL)	G-B	Pθ G-B	3	(Note 56)	226	236	240	<u> </u>
Domodulation Output	R	V _{Rcw}	3	(Note 57)	-	_	20	mV _{p-p}
Demodulation Output Residual Carrier	G	V _{Gcw}	3	(Note 57)	-	_	10	mV _{p-p}
	в	VBcw	3	(Note 57)	—	_	20	mV _{p-p}
Domodulation Output	R	V _{RHC}	3	(Note 57)	—	_	100	mV _{p-p}
Demodulation Output Residual Harmonic	G	VGHC	3	(Note 57)	—	_	50	mV _{p-p}
Residual Harmonic	В	VBHC	3	(Note 57)	—		100	mV _{p-p}
Domedulation Output	R	f DEMOR	3	(Note 58)	0.8	1.0	2.0	MHz
Demodulation Output Band Width	G	f _{DEMO} G	3	(Note 58)	0.8	1.0	2.0	MHz
	В	fdemob	3	(Note 58)	0.8	1.0	2.0	MHz
Demo. Voltage Difference	e	∆Vcol	3	(Note 59)	- 0.3	0	+0.3	V
D.L. AMP. Characteristic		VDL	3	(Note 60)	0.7	1.0	1.3	V _{p-p}
		s _{V1}	3	(Note 61)	4.5	5.0	5.5	V
Sweeper Amplitude		S _{V2}	3	(Note 61)	3.5	4.0	4.5	V
		۶ _V	3	(Note 61)	0.8	1.0	1.2	V _{p-p}
		s _{t1}	3	(Note 61)	80	100	120	ms
Sweeper Period		S _{t2}	3	(Note 61)	5	10	15	ms
		s _t	3	(Note 61)	80	110	140	ms

Deflection stage

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Sync. Sepa. Sense Current	^I IN	4	(Note 62)	10	20	30	μA
H.AFC Detection Current	IDET	4	(Note 63)	200	300	400	μA
H.AFC Detection Stop Period	50TCO1	4	(Note 64)	—	309	—	Н
(50Hz)	50TCO2	4	(Note 64)	—	5	—	Н
H.AFC Detection Stop Period	60TcO1	4	(Note 64)	—	259	—	Н
(60Hz)	60TCO2	4	(Note 64)	—	5	—	Н
32f _H VCO Oscillation Starting Voltage	∨ _{fH}	4	(Note 65)	2.0	3.0	4.0	v
H.OUT Starting Voltage	VH	4	(Note 65)	4.0	4.4	5.0	V
Horizontal Free-Run Frequency	fo	4	(Note 66)	15.475	15.625	15.775	kHz

CHARACTERI	STIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Horizontal Pull-In R	ange	⊿fh Pull	4	(Note 67)	± 500	—	—	kHz
Horizontal Hold Ra	nge	⊿ ^f H HOLD	4	(Note 67)	± 500		—	kHz
Hor. OSC. Control S	ensitivity	βн	4	(Note 68)	4.0	5.5	7.0	Hz/mV
Hor. Output Pulse [Duty	Т	4	(Note 69)	41	43	45	%
X-ray Protector Sen	se Voltage	VON19	4	(Note 70)	1.1	1.3	1.5	V
X-ray Protector Hole	d Voltage	VHOLD19	4	(Note 70)	—	_	2.5	V
Havinovski Output I	Valtana	VHH	4	(Note 71)	4.7	5.0	5.3	V
Horizontal Output	vonage	VHL	4	(Note 71)	-	0	0.1	V
Vertical Pulse Width	1	VP	4	(Note 72)	_	10	_	Н
	****	VVH	4	(Note 72)	4.7	5.0	5.3	V
Vertical Output Vol	tage	V _{VL}	4	(Note 72)	—	0	0.1	V
	/FOU-\	50f _{PV1}	4	(Note 73)	—	260.5	—	н
Vertical Pull-In	(50Hz)	50f _{PV2}	4	(Note 73)	—	353	—	Н
Range	((0))->	60f _{PV1}	4	(Note 73)	_	232		Н
	(60Hz)	60fpV2	4	(Note 73)	_	297		н
Ver. Free-Run	(50Hz)	50V _{free}	4	(Note 74)	-	353	_	Н
Frequency	(60Hz)	60V _{free}	4	(Note 74)	- 1	297	_	н
		V _{SET} 50	4	(Note 75)	5.5	6.0	6.5	V
50Hz/60Hz Switching Voltage		V _{SET} 60	4	(Note 75)	2.5	3.0	3.5	V
	an Valiana	V _{DET} 50	4	(Note 75)	4.5	5.0	5.5	V
50Hz/60Hz Detectio	on voltage	V _{DET} 60	4	(Note 75)	0.5	1.0	1.5	V

OSD interface stage

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
OSD Input ON Current	ION	5	(Note 76)	0.2	0.3	0.4	mΑ
OSD Input OFF Current	^I OFF	5	(Note 77)	0.15	0.22	0.3	mΑ
OSD Output HIGH Level	V ^н ouт	5	(Note 78)	6.5	6.7	6.9	V
OSD Output LOW Level	V ^L OUT	5	(Note 79)	4.4	4.7	5.0	V
Output Rise Time	۳R	5	(Note 80)	—	15	100	ns
Rise Propagation Delay Time	t _{PR}	5	(Note 80)	—	40	100	ns
Output Fall Time	۲F	5	(Note 80)	-	25	100	ns
Fall Propagation Delay Time	t _{PF}	5	(Note 80)	-	15	400	ns
Y→OSD Switching Time	τ Υ→0	5	(Note 81)	-	15	100	ns
Y→OSD Switching Delay Time	tY→0	5	(Note 81)	-	40	100	ns
OSD→Y Switching Time	τ 0→ Υ	5	(Note 81)	-	10	100	ns
OSD→Y Switching Delay Time	t0→Y	5	(Note 81)	-	15	100	ns
OSD Brightness Control Voltage	VOSDBRT	5	(Note 82)	3.4	4.5	5.5	v
OSD Brightness Sensitivity	GOSDBRT	5	(Note 82)	0.5	1.0	1.5	

TEST CONDITIONS

PIF stage

	-	TE	sт со	NDIT	ONS	(UNLE	ESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)
NOTE	ITEM		& W				TEST METHOD
		SW1	SW2	SW3	SW4	SW5	
1	Input Sensitivity	b	OFF	OFF	ON	b	(1) From TP9, input the following signal :
							$f_0 = 38.9$ MHz, 15.75kHz 30% AM, 84dB μ V.
							(2) Measure the 15.75kHz output level at TP43A (VTP).
							(3) Lower the TP9 input level, and measure this
							level when the signal output from TP43A
							drops to – 3dB of the V _{TP} .
2	Maximum IF Input	b	OFF	OFF	ON	b	(1) From TP9, input the following signal :
	Level						$f_0 = 38.9$ MHz, 15.75kHz 30% AM, 84dB μ V.
							(2) Measure the 15.75kHz output level at TP43A (VTP).
							(3) Raise the TP9 input level, and measure this
							input level when the level of the signal
							output from TP43A reaches + 3dB of the VTP.
3	IF AGC Range	ь	OFF	OFF	ON	b	(1) From TP9, input the following signal :
	_						$f_0 = 38.9$ MHz, 15.75kHz 30% AM, 84dB μ V.
							(2) Measure the 15.75kHz output level at TP43A
							(V _{TP}).
							(3) $\Delta A = V_{INmax} - V_{INmin}$
4	Differential Gain	b	OFF	OFF	ON	b	(1) From TP9, input the following signal :
	Differential Phase						$f_0 = 38.9 MHz$, linearity 87.5% AM, 84dB μ V
							(2) Monitor the TP43 output signal with a vector
							scope, and measure DG and DP.
5	No-Signal Level	b	ON	OFF	ON	b	(1) Apply 5V to TP7.
			.				(2) Measure the DC voltage on TP43.
6	Sync. Tip Level	Ь	OFF	OFF	ΟN	þ	(1) From TP9, input the following signal :
	Video Output Level						$f_0 = 38.9$ MHz, black and white mode 87.5% AM, 84dB μ V.
							(2) Measure the sync. signal peak voltage and
							amplitude of the video signal output from
							TP 43 .

		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)										
NOTE	ITEM			VR N			TEST METHOD					
				SW3								
7	Video Frequency	Ь	OFF	OFF	ON	b	(1) From TP9, input a $f_0 = 38.9 MHz$, $84 dB_{\mu}V$					
	Characteristic		or				signal.					
			ON				(2) Measure the voltage on TP7 and fix to that voltage using the external power supply.					
							(3) SW2 on					
							(4) From TP9, input a composite signal of					
							$f_{01} = 38.9$ MHz, 84 dB μ V and $f_{02} = 37.9$ MHz, 74 dB μ V.					
							(5) Measure the TP43 output level. (V _{OSG2})					
							(6) Lower the frequency of f_{02} , and determine					
							the fo2 frequency when the TP38 output level					
							drops to $-3dB$ of V_{OSG2} (f ₀₂ (-3)).					
							(7) $f_V = f_{01} - f_{02} (-3)$					
8	White Noise	Ь	ON	OFF	ON	þ	(1) From TP9, input an 84dBµV frequency sweep					
	Inverter Level						signal (37MHz~47MHz).					
	White Noise Clamp Level						(2) Connect an oscilloscope to TP43 and vary the TP7 voltage. Fix when the following					
	Black Noise						characteristics are obtained.					
	Inverter Level											
	Black Noise Clamp						V					
	Level											
							·······/└─┛/·······/······/·······/·······					
							μη/					
							ХХХ					
							→ _f					
							(3) Measure VWTH, VWCL, VBTH, and VBCL					
9	Carrier Suppression	Ь	ON	OFF	ON	b	(1) From TP9, input the following signal :					
ľ	Ratio	~		0		–	$f_0 = 38.9 MHz$, 15.75kHz 87.5% AM.					
	Harmonic						(2) Set the TP7 voltage so that the output of					
	Suppression Ratio						TP43 is 2V _{p-p} .					
							(3) Stop the modulation, and measure the carrier					
							signal leak voltage at TP43 using a spectrum					
							analyzer.					
							CL = 20ℓog (2/carrier signal leakage)					
							(4) Similarly, measure the leakage of the 2nd and					
							3rd harmonics.					

		TE	TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED V _{CC} = 9V, Ta = $25 \pm 3^{\circ}$ C)										
NOTE	ITEM			VR N			TEST METHOD						
		SW1		SW3		SW5							
10	AFT Sensitivity AFT Characteristics	b		OFF		b	 (1) From TP9, input a f₀ = 38.9MHz, 84dBμV signal. (2) Measure the change in voltage on TP48 when the frequency of the input signal changes by Δ20kHz (ΔV48). (3) Vary the input frequency to obtain the following waveform. 						
11	AFT Center Voltage	b	ON	OFF or ON	ON	b	$\begin{array}{c c} \vdots & \vdots & \vdots \\ \hline -4.5 & -1 & f_0 & f \end{array}$ (4) B / A = B ÷ A × 100 C / A = C ÷ A × 100 (1) Apply 5V to TP7. (2) Measure the TP43 voltage with SW3 off (V43 (0)). (3) Measure the TP43 voltage with SW3 on (V43MUTE). $\Delta V_{43} = V_{43} (0) - V_{43MUTE}$						
12	Intermodulation	b	ON	OFF	ON	b	 (1) From TP8, input a signal composed of the following. SG1 : 38.9MHz 84dBμV SG2 : 34.47MHz 78dBμV SG3 : 33.4MHz 78dBμV (2) Adjust the voltage to TP7 so that the lowest level output at TP43 is 2.4V. (3) Measure the difference between the 4.43MHz and 1.07MHz components in the TP43 output. 						
13	Input Impedance	b	ON	OFF	ON	b	 (1) Apply 5V to TP7. (2) Measure the impedance between pin 9 and GND, and the impedance between pin 10 and GND. 						

SIF stage

	ge	TE			ONS	(UNLE	SS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)				
NOTE	ITEM			VR N							
				SW3			TEST METHOD				
14	FM Detection	b	ON	OFF	OFF	b	(1) From TP49, input the following signal :				
	Output Level						$f_0 = 5.5$ MHz, 100dB μ V, 400Hz, 25kHz devi FM.				
							(2) Measure the TP3 output level.				
15	Input Limiting	b	ON	OFF	OFF	b	(1) From TP49, input the following signal :				
	Sensitivity						$f_0 = 5.5$ MHz, 100dB μ V, 400Hz, 25kHz, devi FM.				
							(2) Lower the input level and measure the input				
							level when the TP3 output level drops to –				
							3dB of V _{OD} .				
16	AM Rejection Ratio	Ь	ON	OFF	OFF	þ	(1) From TP49, input $f_0 = 5.5$ MHz.				
							FM : 400Hz 25kHz devi				
							AM : 400Hz 30%, input level 100dB μ V				
							(2) Measure the FM and AM output levels at TP3.				
							AMR = 20ℓog (FM / AM)				
17	Band Width (3dB)	b	ON	OFF	OFF	b	(1) From TP44, input the signal : $f_0 = 5.5MHz$,				
							100dB μ V, 400Hz 25kHz devi FM.				
							(2) Vary the input signal frequency (f ₀),				
							measuring this frequency when the TP3				
							output drops to – 3dB of V _{OD} .				
18	THD Band Width	b	ON	OFF	OFF	b	(1) From TP49, input the signal : f ₀ = 5.5MHz,				
	(1.5%)						100dB μ V, 400Hz 25kHz/devi FM.				
							(2) Vary the input signal frequency (f ₀), and				
							measure this frequency when the TP3 output				
							signal distortion rate reaches 1.5%.				
19	ATT AC Gain	a	ON	OFF	ON	C	(1) From TP1, input a 1kHz, 1V _{p-p} signal.				
							(2) Apply 5.0V to TP50.				
							(3) Determine the TP2 output level (V_{2ATT}).				
							$G_{ATT} = 20 log (V_{2ATT} / 1.0)$				
20	ATT Max.	a	ON	OFF	ON	c	(1) From TP1, input a 1kHz signal.				
	Attenuation						(2) Apply 5.0V to TP50. Adjust the input signal				
	Volume						level so that the TP2 output level is $1V_{p-p}$.				
							(3) Apply OV to TP50, and measure the TP2				
							output level (V_{2min}).				
							$G_{ATTmax} = 20 log (V_{2min} / 1.0)$				
21	AF Amp AC Gain	b	ON	OFF	ON	a	(1) From TP2A, input a 1kHz, 0.1V _{p-p} signal.				
							(2) Measure the TP53 output level (V _{P53}).				
							GVAF = 20ℓog (V _{P53} / 0.1)				

Video stage

video	Jage											
		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C SW & VR MODES										
NOTE	ITEM					TEST METHOD						
		SW 14	VR3	VR4	VR2							
22	Y Input Impedance	OFF	MIN	CNT	CNT	(1) To pin 31, apply a 1V _{p-p} , 1kHz signal via						
						10kΩ.						
						(2) Measure the TP31 signal amplitude (V_{31}).						
						(3) INP = $V_{31} \times 10^4 / (1.0 - V_{31})$						
23	SHR Input	OFF	CNT	CNT	CNT	(1) To pin 33, apply a 0.1V _{p-p} , 2.4MHz signal via						
	Impedance					$10k\Omega$.						
						(2) Measure the pin 33 signal amplitude (V_{33}). (3) INP _{SHR} = $V_{33} \times 10^4$ / (0.1 – V_{33})						
24	Y Input Dynamic	ON	CNT		MIN	(1) Adjust VR4 so that the picture period voltage						
24	Range			101	101114	on T19 is 4.5V.						
						(2) Measure the DC voltage on TP15 (V ₁₅).						
						(3) Add DC voltage V ₁₅ to TP15.						
						(4) Connect an external power supply to pin 31						
						and change the DC voltage.						
						(5) Measure the pin 31 input voltage at 10% of						
						the total TP19 voltage range swing (V _{di1}),						
						and the pin 31 input voltage at 90% of the						
						range (V _{di2}). D _{ynY} = V _{di1} – V _{di2}						
25	SHR Input Dynamic	OFF	мах	ADJ	CNT	(1) Adjust VR4 so that the picture period voltage						
	Range					on T19 is 4.5V.						
	, in the second se					(2) Input a 2.4MHz signal from TP33.						
						(3) When changing the input signal amplitude,						
						measure this amplitude at the start of						
						saturation of the TP19 output.						
26	Max. Video Output	ON	CNT	ADJ	МАХ	(1) Adjust VR4 so that the picture period voltage						
	Level Min. Video Output					on T19 is 4.5V. (2) Measure the voltage on TP15 (V ₁₅).						
	Level					(3) Apply V_{15} to TP15.						
						(4) Connect an external power supply to pin 31						
						and change the voltage.						
						(5) Measure the maximum and minimum TP19						
						output voltages.						
27	Video Output	OFF	CNT	ADJ	ÇNT	(1) Adjust VR4 so that the picture period voltage						
	Drive Current					on T19 is 4.5V.						
						(2) Connect TP19 to the V _{CC} via $1k\Omega$.						
						(3) Measure the TP19 picture period voltage						
						(V_{19}) . YISINK = $(V_{10} - V_{10})/1$ (mA)						
						$Y_{1SINK} = (V_{CC} - V_{19}) / 1 (mA)$						

		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 2										
NOTE	ITEM		SW &	VR N	10DES							
		SW 14		VR4		TEST METHOD						
28	Video AC Gain	OFF	CNT	ADJ	МАХ	(1) Adjust VR4 so that the picture period voltage						
						on T19 is 4.5V.						
						(2) Input a 100kHz, 1V _{p-p} signal to TP31. (3) Measure the TP19 output signal amplitude						
						(V ₁₉).						
						$G_{Y} = 20 log (V_{19}/1) (dB)$						
29	SHR AC Gain	OFF	МАХ	ADJ	МАХ	(1) Adjust VR4 so that the picture period voltage						
						on T19 is 4.5V.						
						(2) Input a 2.4MHz, 0.1V _{p-p} signal to TP33.						
						(3) Measure the TP19 output signal amplitude						
						(V_{19}) .						
30	Video Frequency	OFF	CNT		MAX	G _{SHR} = 20log (V ₁₉ /0.1) (dB) (1) Adjust VR4 so that the picture period voltage						
	Characteristic			707		on T19 is 4.5V.						
						(2) Input a 100kHz, 1V _{p-p} signal to TP31.						
						(3) Measure the TP19 output signal amplitude						
						(V ₁₉).						
						(4) Change the input signal frequency, and						
						measure the input signal frequency when the						
31	Brightness Control	055	CNT			TP19 output level drops to - 3dB of V ₁₉ . (1) Adjust VR4 so that the picture period voltage						
21	Sensitivity			ADJ		on T19 is 4.5V.						
						(2) Adjust VR4 to increase the TP34 voltage by						
						0.5V.						
						(3) Measure the TP19 output voltage (V_{19}).						
22	Brightness Control		CNT		CNT	$GBRT = (V_{19} - 4.5) \times 2$						
32	Voltage	OFF		ADJ		 Adjust VR4 so that the picture period voltage on T19 is 4.5V. 						
	Voltage					(2) Measure the TP34 voltage.						
33	DC Restoration	OFF	CNT	ADJ	CNT	(1) Adjust VR4 so that the picture period voltage						
						on T19 is 4.5V.						
						(2) From TP31, input a 1V _{p-p} signal with 100% APL.						
						(3) Monitoring in TP19 oscilloscope AC mode,						
						measure the TP19 black level fluctuation						
						when the input signal APL changes from						
						100% to 0% (V _{AC}).						
						(4) Set the oscilloscope to DC mode, and measure						
						the black level fluctuation as above (V_{DC}).						
						$T_{DC} = (1 - V_{DC} / V_{AC}) \times 100$						

		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C									
NOTE	ITEM	5	SW &	VR N	10DES	\$					
		SW 14	VR3	VR4	VR2		TEST METHOD				
34	Clamp Terminal	OFF	CNT	ADJ	CNT		(1) Adjust VR4 so that the picture period voltage				
	Voltage						on T19 is 4.5V.				
							(2) Measure the TP15 DC voltage.				
35	Contrast Control	OFF	CNT	ADJ	ADJ		(1) Adjust VR4 so that the picture period voltage				
	Voltage						on T19 is 4.5V.				
	Contrast Gain						(2) Input a 100kHz, $0.5V_{p-p}$ signal to TP31.				
	Variable Range						(3) Adjust VR2 from maximum to minimum.				
							When at maximum, the TP19 output signal amplitude is 100% ; at minimum, 0%.				
							Measure the voltages on TP39 at 90% and				
							10%.				
							TP19				
							100%				
							90%				
							10%				
							трз9				
							(4) With VR2 at maximum then minimum,				
							measure the TP19 output signal levels (V _{MAX}				
							and V _{MIN}).				
	-						$\Delta G_{CONT} = 20 \log (V_{MAX} / V_{MIN})$				
36	Frequency Response	OFF	CNT	ADJ	ADJ		(1) Adjust VR4 so that the picture period voltage on T19 is 4.5V.				
	Dependence on						(2) To pin TP31, input 100kHz and 4MHz signals,				
	Contrast Control						both with amplitude of $1V_{p-p}$.				
							(3) With VR4 at maximum then minimum,				
							measure the TP19 output signal levels (VMAX				
							and V _{MIN}).				
							4MHz 100kHz				
							$\Delta G_{fCONT} = 20 \log (V_{MAX}^{4MHz} / V_{MAX}^{100kHz})$				
							– 20ℓog (V _{MIN} ^{4MHz} / V _{MIN} ^{100kHz})				

		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C) SW & VR MODES											
NOTE	ITEM		6W &	VR N	10DES								
		SW 14	VR3	VR4	VR2	TEST METHOD							
37	Picture Control Gain Range	OFF	ADJ	ADJ	CNT	(1) Adjust VR4 so that the picture period voltage on T19 is 4.5V.							
						 (2) Input a 2.4MHz, 0.1V_{p-p} signal to pin TP33. (3) With VR3 at maximum then minimum, measure the TP19 output signal levels (V_{MAX} and V_{MIN}). △G_{SHR} = 20ℓog (V_{MAX} / V_{MIN}) 							
38	Picture Control Voltage Range	OFF	ADJ	ADJ	CNT	 (1) Adjust VR4 so that the picture period voltage on T19 is 4.5V. (2) Input a 2.4MHz, 0.1V_{p-p} signal to pin TP33. (3) Adjust VR3 from maximum to minimum. When at maximum, the TP33 output signal amplitude is 100% ; at minimum, 0%. Measure the voltages on TP33 at 90% and 10%. 							
39	V-BLK Pulse Output Level H-BLK Pulse Output Level V-BLK Pulse Width (50Hz) V-BLK Pulse Width (60Hz)	OFF	CNT	ADJ	CNT	 (1) Adjust VR4 so that the picture period voltage on T19 is 4.5V. (2) Measure TP19 using an oscilloscope. (3) Measure the vertical and the horizontal blanking period voltages. (4) Measure the vertical blanking pulse width. (5) Monitor TP21 using an oscilloscope. Measure the TP19 horizontal blanking pulse delay in relation to TP21. 							

Chroma stage

		TE	sт со	NDIT	ONS	(UNLE	SS O	THER	NISE	SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)
NOTE	ITEM									
		SW 32	SW 10	SW 33	SW 30	SW 37	VR1	VR2	VR5	TEST METHOD
40	ACC Characteristic	ON	OFF	ON	â	OFF	MIN	MIN	CNT	(1) From TP35A, input a burst cross = 1 : 2.25 signal. (2) Measure the TP17 output signal amplitude with burst levels of 10mV _{p-p} , 100mV _{p-p} , and 300mV _{p-p} . TP17 e_a e_{c1} e_{c2} e_{c1} e_{c2} e_{c2} e_{c1} e_{c2} e_{c2} e_{c2} e_{c2} e_{c1} e_{c2
41	Unicolor Control Voltage Range Unicolor Control Gain Range	ON	OFF	ON	a	OFF	CNT	ADJ	CNT	 (1) Input a 150mV_{p-p} chroma signal from TP35A. (2) Adjust VR2 from maximum to minimum (V_{17MAX} and V_{17MIN}). When at maximum, the TP19 output signal amplitude is 100% ; at minimum, 0%. Measure the voltages on TP39 at 90% and 10%. TP17 100% 90% 4GUNI = 20ℓog (V_{17MAX}/V_{17MIN})

		TE	st co	NDIT	ONS	SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)				
NOTE	ITEM				& VR		DES			TEST METHOD
		SW 32	SW 10	SW 33	SW 30	SW 37	VR1	VR2	VR5	TEST METHOD
42	Unicolor Control Phase Change	ON	OFF	ON	a	OFF	CNT		CNT	signal from TP35A. (2) Monitoring TP17, vary VR2 and measure the phase change when the level at TP17 drops by 20dB.
43	Color Control Voltage Range Color Control Gain Range	ON	OFF	ON	a	OFF	ADJ	CNT	CNT	 (1) Input a 150mV_{p-p} chroma signal from TP35A. (2) Adjust VR1 from maximum to minimum. When at maximum, the TP16 output signal amplitude is 100% ; at minimum, 0% (V17MAX and V17MIN). Measure the voltages on TP40 at 90% and 10%. TP17 100% 90% 90% 10% TP17 100% TP17 100% TP17 10% GCOL = 20ℓog (V17MAX/V17MIN)
44	Color Control Phase Change	ON	OFF		а	OFF		CNT		 Input a 150mV_{p-p} chroma signal from TP35A. Monitoring TP17, vary VR1 and measure the phase change when the level at TP17 drops by 20dB.
45	Color Control Residual	ON	OFF	ON	а	OFF	MIN	MAX	CNT	 Input a 150mV_{p-p} chroma signal from TP35A. Adjust VR1 to minimum, and measure the TP17 output signal amplitude.

		TE:	st со	NDIT	IONS	(UNLE	SS O	WISE	SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)	
NOTE	ITEM						DES			
		SW 32	SW 10	SW 33	SW 30	SW 37	VR1	VR2	VR5	TEST METHOD
46	Tint Control Voltage Range Tint Control Phase Range	ŌN	OFF	ŌN	a	OFF	CNT	CNT	ADJ	 (1) Input a 150mV_{p-p} chroma signal from TP35A. (2) Adjust VR5 from maximum to minimum. When at maximum, the TP17 output signal amplitude is 100% (θ₁); at minimum, 0% (θ₂). Measure the voltages on TP32 at 90% and 10%. TP17 100% 90% 0%
47	PAL/NTSC SW Voltage	OFF	OFF	ON	à	OFF	CNT		CNT	 Input a 150mV_{p-p} chroma signal from TP35A. Lower the TP32 voltage. Measure the TP32 voltage when the mode switches from NTSC to PAL.
48	Killer Sensitivity	ON	OFF	ON	a	OFF			CNT	signal from TP35A. (2) Attenuate the burst level of the input signal, and measure the burst level when the TP40 voltage goes low.
49	Killer Voltage	ON	OFF	ON	Ь	ON	CNT	CNT	CNT	 (1) Set the TP35A input to zero. (2) Vary the TP42 voltage, and measure the TP42 voltage when the TP40 voltage goes low.

		TE:	st co	NDIT	ONS	SPECIFIED V _{CC} = 9V, Ta = $25 \pm 3^{\circ}$ C)				
NOTE	ITEM				& VP		DES			
		SW 32	SW 10	SW 33	SW 30	SW 37	VR1	VR2	VR5	TEST METHOD
50	Ident Sensitivity	ON	OFF	ON	a		ÇNT	ÇNT	CNT	(1) Input a 150mV _{p-p} chroma
										signal from TP35A.
										(2) Attenuate the burst level of
										the input signal, and measure
										the burst level when the ID
				<u></u>						malfunction starts.
51	Ident Voltage	ON	OFF	ON	ь	ON		CNT	CNT	(1) Set the TP35A input to zero.
										(2) Vary the TP42 voltage,
										monitor TP11, and measure
										the TP42 voltage when the
52	APC Pull-In Range	ON	OFF	ON	a	OFF	CNT	CNT	CNT	sweep begins. (1) Input a 4.43MHz, 100mV _{p-p}
52	APC Hold Range		Orr		a	Orr				signal from TP35A.
	Are note hange									(2) Monitoring TP40, vary the
										input signal frequency and
										measure the input signal
										frequencies when the TP40
										voltage goes high (fpH, fpL).
										⊿f _{PH} = f _{PH} – 4433619 (Hz)
										⊿fpL = 4433619 – fpL (Hz)
										(3) Measure the input signal
										frequencies when the TP40
										voltage goes low (f _{HH} , f _{HL}).
										⊿f _{HH} = f _{HH} – 4433619 (Hz)
										⊿f _{HL} = 4433619 – f _{HL} (Hz)
53	Frequency Sensitivity	ON	OFF	ON	Ь	ON	CNT	CNT	CNT	(1) Set the TP35A input to zero, killer off.
										(2) Measure the TP14 oscillation
										frequency.
										(3) Vary the TP11 voltage, and
										measure the TP11 voltage
										when the oscillation frequency
										at TP14 is f _{sc} (V ₁₁).
										(4) Measure the TP14 ∆f when
										adding V ₁₁ ± 200mV to TP11. $\beta = Af / 400 mV$
										$\beta = \Delta f / 400 mV$

		TE	st со					NISE	SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)	
NOTE	ITEM				& VR		DES			
		SW 32	SW 10	SW 33	SW 30	SW 37	VR1			TEST METHOD
54	Demodulation Color Differential Output	ON	OFF	ON	a		ΜΑΧ			signal (rainbow color) to TP35A. (2) Measure the output signal amplitudes of TP16, TP17, and TP18.
55	Max. Demodulation Color Differential Output	ON	ON	ON	â	ON	MAX			 100mV_{p-p} signal to TP35A. (2) Killer off (3) Vary the TP11 voltage so that the oscillation frequency of TP14 is 4.433619MHz. (4) Measure the output signal amplitude of TP16, TP17, and TP18.
56	Demodulation Relative Amplitude Demodulation Relative Phase	ON	ON	ON	a	ON	CNT		CNT	 100mV_{p-p} signal to TP35A. (2) Killer off (3) Vary the TP11 voltage so that the oscillation frequency of TP14 is 4.433619MHz. (4) Measure the output amplitude ratios of TP16, TP17, and TP18 (VR / V_B and V_G / V_B). (5) Measure the relative phase differences of the 10kHz signals output from TP16, TP17, and TP18 (θ_{R-B}, θ_{G-B}).
57	Demodulation Output Residual carrier Demodulation Output Residual harmonic	ON	ON	ON	a	ON	CNT	CNT	CNT	 (1) Set the TP35A input to zero. (2) Killer off (3) Vary the voltage on TP11 so that the TP14 oscillation frequency is 4.433619MHz (f_{sc}). (4) Measure the f_{sc} leakages of TP16, TP17, and TP18. (5) Likewise, measure the f_{sc} harmonics.

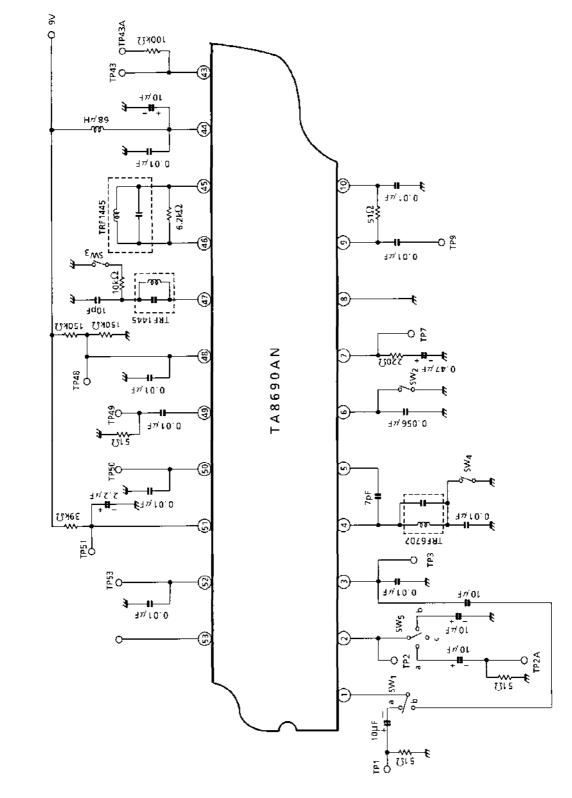
		TE	ят со	NDIT	ONS	(UNLE	SS O	THER	NISE	SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)
NOTE	ITEM	SW & VR MODES								
		SW 32	SW 10	SW 33	SW 30	SW 37	VR1	VR2	VR5	TEST METHOD
58	Demodulation Output Band Width	ON	OFF	ON	a	ON	CNT	CNT	CNT	 Input a 4.433619MHz, 100mV_{p-p} signal from TP35A. Killer off Vary the voltage on TP11 so that the TP14 oscillation frequency is 4.433619MHz (f_{sc}). Measure the output amplitude of TP16, TP17, and TP18, and set them to 0dB. Vary the input frequency, and measure the input frequency when the color difference output drops to - 3dB (f_{IN}). fDEMO = f_{IN} - f_{sc} (Hz)
59	Demo. Voltage Difference	ON	OFF	ON	a	OFF	MIN	MIN	CNT	 Input a 100mV_{p-p} chroma signal from TP35A. Measure the DC differential voltages of TP16, TP17, and TP18.
60	D.L. AMP. Characteristic	ON	OFF	OFF	а	OFF	CNT	CNT	CNT	 (1) From TP35A, input a 100mV_{p-p} chroma (burst) signal with a burst/chroma ratio of 1 : 2. (2) Measure the TP38 output signal amplitude.
61	Sweeper Amplitude Sweeper Period	ON	OFF	ON	à	OFF	CNT	CNT	CNT	 (1) Set the TP35A input to zero. (2) Monitor the TP11 waveform. Sv1 Sv2 Sv2<!--</td-->

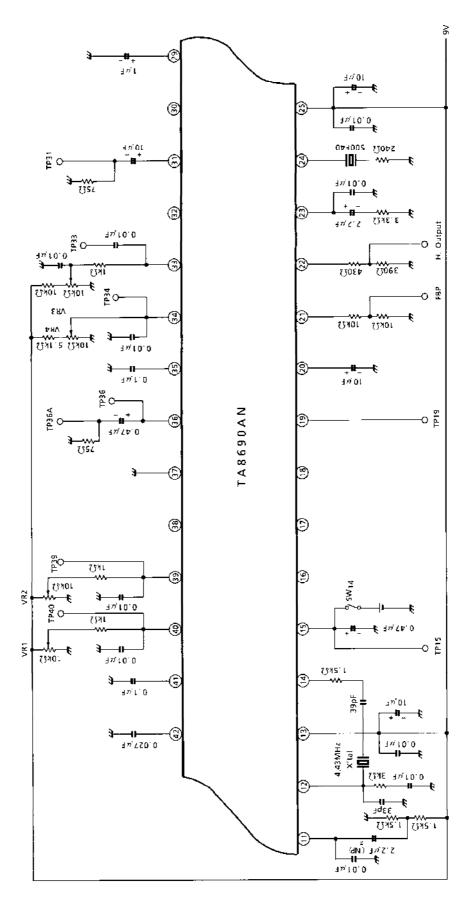
Deflection stage

	tion stage	TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3					
NOTO	ITEM			VR MODES			
NOTE		sw sw			TEST METHOD		
		22	24				
62	Sync. Sepa. Sense Current	ON	ON		(1) Connect an external power supply to TP36B via an ammeter.		
					(2) Decrease the external power supply voltage		
					from 3V, and read the ammeter when the		
					vertical output cycle of TP30 reduces from		
					353H, to 268.5H.		
63	H.AFC Detection	OFF	ON		(1) Set the external power supply to the pin 23		
	Current				voltage when the pin is open, and connect to TP23B.		
					(2) Input the signal shown below to TP36A.		
					(3) Monitor TP23A and calculate the current from		
					the data in the diagram below.		
					$I_{DET} = V_1 (mV) / 1 (k\Omega) (mA)$		
					4.7μs V1 TP36A TP36A TP36A		
64	H.AFC Detection	ON	ON		(1) Input a $2V_{p-p}$ composite video signal to		
	Stop Period				TP36A.		
					(2) Monitor TP23A and measure the period between signal spikes.		
65	32f _H VCO	ON	OFF		(1) Do not connect V _{CC} to pin 12.		
	Oscillation Starting				(2) Connect an external power supply to TP25		
	Voltage				and increase the voltage from 2V.		
	H.OUT Starting				(3) Measure the voltage when an oscillation waveform occurs at TP24.		
	Voltage				(4) Measure the voltage when horizontal output		
					occurs at TP21.		
66	Horizontal Free-	ON	ON		(1) Measure the frequency of the horizontal		
	Run Frequency				output that occurs at TP22.		

		TE	TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ±						
ΝΟΤΕ	ITEM		-	VR MODES					
		SW 22	SW 24		TEST METHOD				
67	Horizontal Pull-In Range Horizontal Hold Range	ON	ON		variation 4.7µs				
					 (1) Apply the following signal to TP36A. (2) Monitor TP36A and TP21. (3) Measure the lock-in frequency range, in which the frequency is locked when the frequency of the above signal is varied (Δf_{HPULL}). (4) Likewise, measure the retention frequency range, in which the frequency is lost (Δf_{HHOLD}). 				
68	Hor. OSC. Control Sensitivity	ON	ON		(1) Measure the TP22 frequency change when the TP23A voltage changes by ±0.05V from the voltage with a horizontal oscillation frequency of 15625Hz.				
69	Hor. Output Pulse Duty	ON	ON		(1) Monitor the TP22 output waveform. $T = t_1 / (t_1 + t_2) \times 100 $ (%)				
70	X-ray Protector Sense Voltage X-ray Protector Hold Voltage	ON	ON or OFF		 (1) Apply voltage to TP20, and measure the TP20 voltage when the TP22 output disappears (becoming low level). (2) SW24 : off (3) After applying 2.5V to TP25, check that TP22 is at low level when the voltage is increased to 9V. 				
71	Horizontal Output Voltage	ON	ÓN		(1) Measure the high-level voltage and low-level voltage on the waveform output from TP22.				
72	Vertical Pulse Width Vertical Output Voltage	ON	ON		(1) Monitor the waveform output from TP30. V_{VH} V_{P} (2) Measure Vp, V _{VH} , and V _{VL} .				

		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ± 3°C)							
NOTE	ITEM	5	& W	VR MODES					
		SW 22			TEST METHOD				
73	Vertical Pull-In Range	ON	ON		 Input a 2V_{p-p} composite video signal to TP36A. Change the V sync. frequency of the composite video signal, and measure the V sync. frequency range where the V output is locked. 				
74	Ver. Free-Run Frequency	ON	ON		 (1) Apply voltage to TP23A so that the frequency of the signal output from TP22 is 15625Hz. (2) Measure the frequency of the signal output from TP30. 				
75	50Hz / 60Hz Switching Voltage 50Hz / 60Hz Detection Voltage	ON	ON		 (1) Apply external voltage to TP41, and measure the voltages at TP41 and TP35 when the TP30 output signal cycle changes from 297H to 353H. (2) Likewise, measure the voltage on TP41 and TP35 when the TP30 output signal cycle changes from 353H to 297H. 				

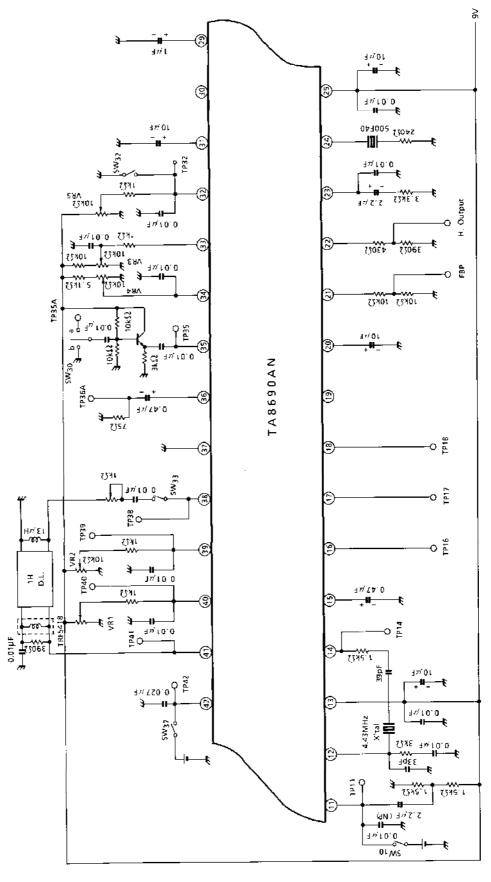

OSD stage


		TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED $V_{CC} = 9V$, Ta = 25 ±									
NOTE	ITEM	SW & VR MODES									
		VR4	VR6	SW		SW	TEST METHOD				
76	OSD Input ON	CNT	CNT	26 OFF	27 OFF	28	(1) Apply 5V externally to TP26.				
76	Current			ULL	UFF		(2) Lower the external voltage, and measure the				
	Current						current output from TP26 when the voltage				
							output from TP16 goes high.				
							(3) Perform the same measurement at TP27 and				
							TP28.				
77	OSD Input OFF	CNT	CNT	OFF	OFF	OFF	(1) Apply externally 0V to TP26.				
''	Current						(2) Increase the external voltage, and measure				
	Contene						the current output from TP26 when the				
							voltage output from TP16 goes low.				
							(3) Perform the same measurement at TP27 and				
							TP28.				
78	OSD Output HIGH	CNT	CNT	ON	ON	ON	(1) Turn SW26 on.				
	Level						(2) Measure the TP16 output voltage.				
							(3) Perform the same measurement at TP17 and				
							TP18.				
79	OSD Output LOW	CNT	CNT	ON	ON	ON	(1) Turn SW26 on, and SW27 and SW28 off.				
	Level			or	or	or	(2) Measure the TP17 and TP18 output voltages.				
				OFF			(3) Perform the same measurement for B and G.				
80	Output Rise Time	CNT	CNT	OFF	OFF	OFF	(1) Input signal (a) shown below to TP26.				
	Rise Propagation						(2) Monitoring TP16, TP17, and TP18, measure $ au_{ m R}$,				
	Delay Time						tpR, $ au_{\rm F}$, and tpF as shown in (b) in the				
	Output Fall Time						diagram below.				
	Fall Propagation						(3) Perform the same measurements for TP27 and				
	Delay Time						TP28.				
							20ns - 20,45 - 20ns				
							5V				
							50% (a)				
							100%				
							50%				
							1 <u>0%</u>				
							0%				
							CR				

TOSHIBA

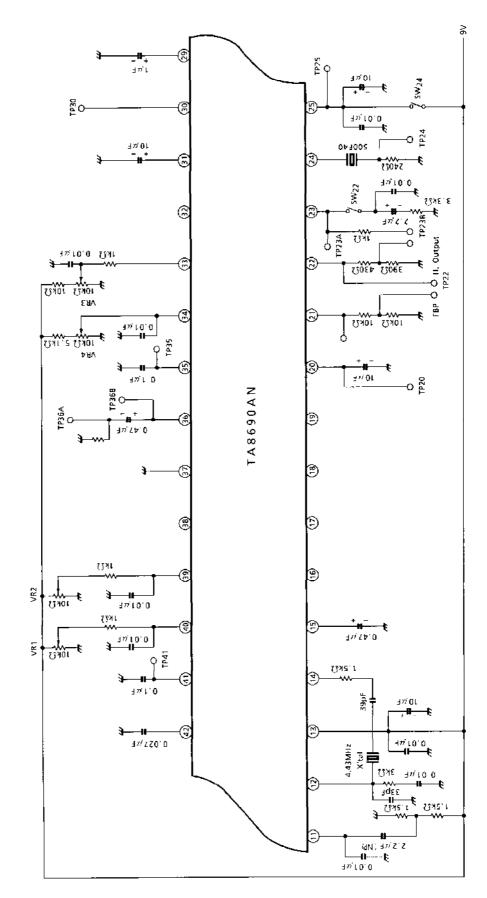
TEST CONDITIONS (UNLESS OTHERWISE SPECIFIED V _{CC} =9V, 1									
NOTE	ITEM			VR N					
		VR4	VR6	SW 26	SW 27	SW 28	TEST METHOD		
81	Y→OSD Switching Time Y→OSD Switching Delay Time OSD→Y Switching Time OSD→Y Switching Delay Time	ADJ		OFF	OFF		(1) Adjust VR4 so that the T19 output voltage is 5V. (2) Input signal (a) shown below to TP26. (3) Adjust VR6 so that the T19 output voltage with OSD on is 4V. (4) Monitoring TP19, measure τ_{Y-O} , t_{Y-O} , τ_{O-Y} , and t_{O-Y} as shown in (b) in the diagram below. $\frac{20ns}{50\%} + \frac{20\mu s}{50\%} + \frac{20ns}{(a)}$		
82	OSD Brightness Control Voltage OSD Brightness	CNT	ADJ	ON	ON	ON	 (1) Adjust VR6 so that the TP19 output voltage is 4V. (2) Measure the voltage on TP54. 		
	Sensitivity						(3) Measure the TP19 fluctuation when changing the TP54 voltage ±0.5V (ΔV ₁₉).		
		$ G_{OSDBRT} = \Delta V_{19} / 1$							

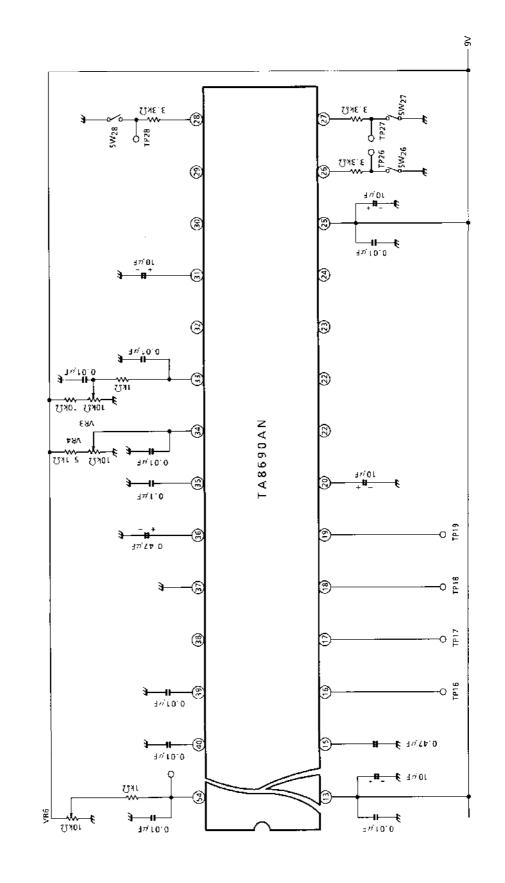
TA8690AN-40



2001-01-10 41/48

TEST CIRCUIT 2 Video




2001-01-10 42/48

TA8690AN-43

TOSHIBA

TA8690AN-44

2001-01-10 44/48

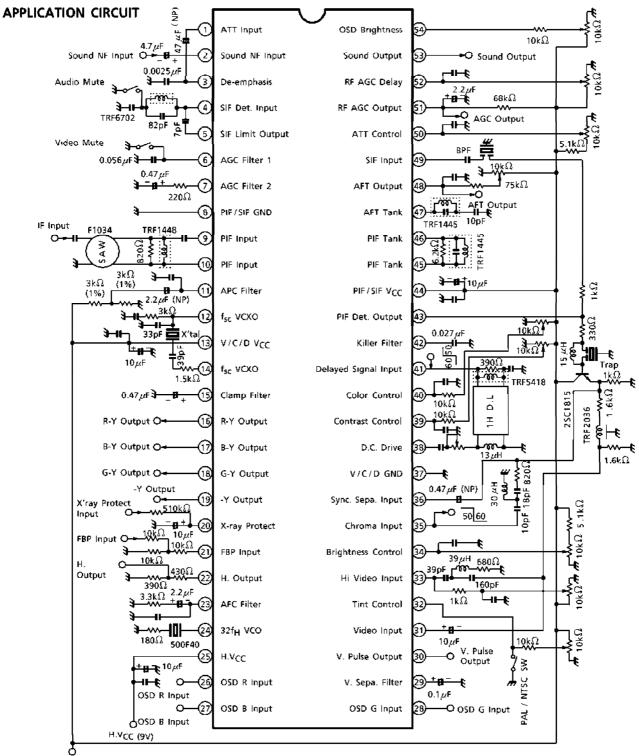
SPECIAL COMPONENT DATA

Coil

COMPO- NENT	USE	SIZE	CONNECTION DIAGRAM (BOTTOM VIEW)	ELECTRICAL SPECS.
TRF-1445D	PIF AFT	10mm		
TRF-6702D	SIF	10mm		Nominal center frequency : 4.5~6.5MHz Inductance c _{MAX} : 160.1pF (STD) – 10% or higher c _{MIN} : 95.3pF (STD) + 10% or lower No load Q : 48 ± 20% (at 4.5MHz) Coil : 0.1¢, 50t (*) Set the center frequency using external capacitor C.
TRF-5418	Matching coil for 1HDL	10mm		L _{min} : 5.2μH or lower L _{max} : 12.2μH or higher Q = 57 (at L = 8.6μH)
TRF-1448	Matching coil for SAW filter (F1034)	10mm		Inductance : L = 1.33µH (±5%) No load Q : Q _U = 39 (±20%)

TOSHIBA

X'tal

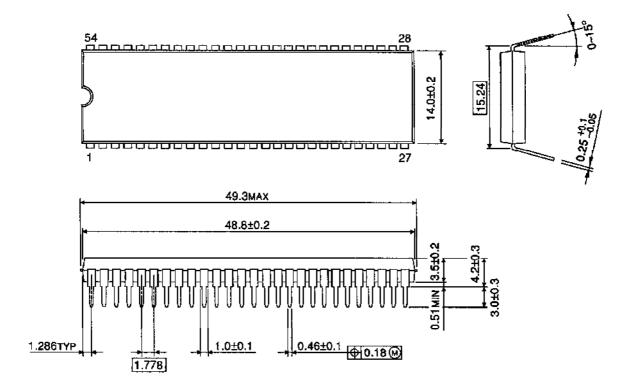

For PAL Frequency deflection Temperature characteristics Load capacitance	4.433619MHz ±25ppm ±30ppm (–10~75°C) 16pF			
Recommended	Nihon Denpa Industrie	25	NR-18	
1H delay line				
Nominal frequency Insertion loss 3dB band Unwanted reflection	4.433619MHz (f _o) 10±3dB (at f _o), delay f _o ±1.0MHz or more 32dB or more (f _o ±1N		5μs	
Recommended	Matsushita Denshi		EFD-ED 645A	41T
32f _H ceramic oscillator				
Recommended	Murata Manufacturing	g Co., Ltd.	CSB503F30	
Delay line				
	TRF2036 Delay time Characteristic impedan Frequency characterist	ce 1.6	ns±7% κΩ±10%	
	Frequency (MHz)	3.0	4.0	4.43

Attenuation (dB)

2±1.5

6±2

25 or higher



Unless otherwise specified $0.01 \mu F$

Unit : mm

Weight : 5.44g (Typ.)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.