

SEMICONDUCTOR TECHNICAL DATA

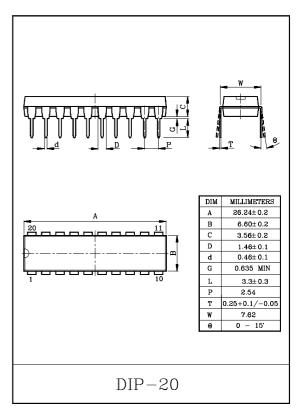
KIA6035P/F BIPOLAR LINEAR INTEGRATED CIRCUIT

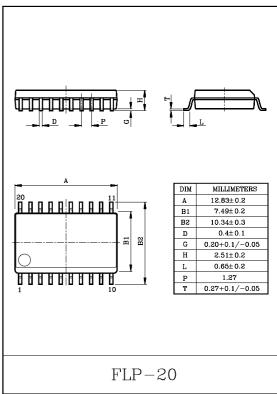
AM TUNER SYSTEM FOR CAR AUDIO

The KIA6035P/F is a high performance AM electronic tuner IC that is greatly improved in cross modulation characteristic.

It is especially suited for use in car radio and home stereo (antenna:loop) applications.

FUNCTIONS

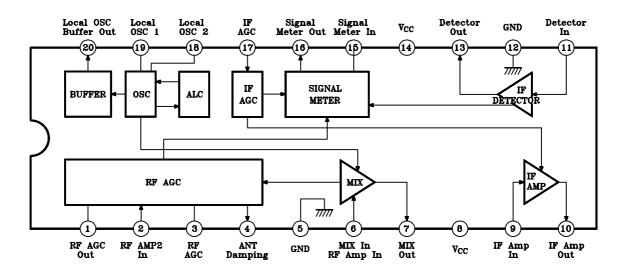

- ·MIX ·OSC(with ALC) ·IF amp ·Detector
- •AGC(normal) •RF wide band AGC
- ·Auto search stop signal (signal meter output)
- ·Local oscillation buffer output ·Others


FEATURES

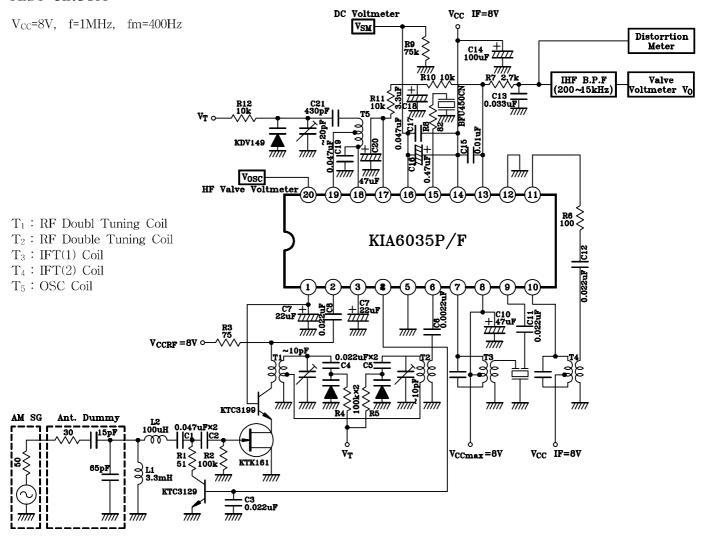
- · Excellent cross modulation characteristic.
- The narrow-band signal meter output is usable as auto search stop signal.
- · Local oscillation buffer output.
- The OSC with ALC improves tracking error.
- · Double-balanced differential mix.
- · Low Noise: 56dB(Typ.).
- Usable Sensitivity: 25dB\$\mu\$ (at S/N=20dB)
- Wide Supply Voltage : V_{CC} =7.5 $V \sim 12V$.

MAXIMUM RATINGS (Ta=25℃)

CHARACTE	SYMBOL	RATING	UNIT		
Supply Voltage	pply Voltage		16	V	
Output Voltage	$ m V_{out}$	24	V		
Input Voltage	V_{IN}	5.6	V		
Supply Current	I_{CC}	41	mA		
Diamo Out Comm	I ₁₈	2	Δ		
Flow-Out Curre	nt	I ₂₀	2	mA	
Power	Power KIA6035P		730	117	
Dissipation KIA6035F		P_{D}	500	mW	
Operating Temp	$T_{ m opr}$	-30~85	$^{\circ}$		
Storage Tempera	ature	$T_{ m stg}$	-55~150	$^{\circ}$	



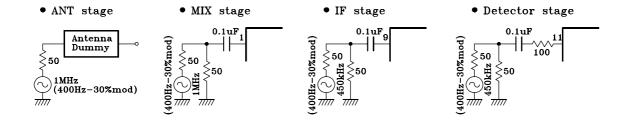
ELECTRICAL CHARACTERISTICS


 $(Ta=25\,^{\circ}\text{C, Vcc}=8\text{V, } \text{f}=1\text{MHz, } \text{fm}=400\text{Hz, } \text{Mod}=30\%)$

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Supply Current	I_{CCQ}	_	13.5	22.5	32.5	Δ
Supply Current	I_{CC}	V_{IN} =130dB μ	20.0	30.0	41.0	mA
	V _{OD1}	V_{IN} =16dB μ	-29.0	-25.0	-21.0	dBm
Detection Output	$ m V_{OD2}$	V_{IN} =74dB μ	-15.0	-12.0	-9.0	dBm
Signal to Noise Ratio	S/N	S/N V_{IN} =74dB μ		56.0	_	dB
	THD1	V_{IN} =74dB μ	-	0.3	1.0	%
Total Harmonic Distortion	THD2	V _{IN} =74dBμ, Mod=80%	-	0.3	1.0	%
	THD3	V _{IN} =130dBμ, Mod=80%	-	0.4	2.0	%
6: 11/1 0 1	V_{SM1}	Quiescent	-	0	0.3	V
Signal Meter Output	$ m V_{SM2}$	V_{IN} =130dB μ	3.0	5.0	7.5	V
Input Voltage at Signal Meter Output 1V	$V_{IN(1)}$	V _{SM} =1V	18.0	24.0	30.0	dΒμ
Local OSC Buffer Output	V _{OSC(BUF)}	-	320	380	_	$mV_{\rm rms}$
Usable Sensitivity	Q.S.	S/N=20dB	_	25.0	_	$\mathrm{dB}\mu$
Detection Output Variation	$\Delta m V_{OD}$	V _{IN} =74dB ~130dBμ	-	0.2	-	dB
Wide-Band AGC ON State Input	WB _{AGC}	Interference 1.4MHz non mod. Reception 1.0MHz Quiescent Input for ANT Damping ON.	-	82.0	-	dΒμ
Local OSC Variation Within broadcast band	ΔV_{OSC}	VosciVosch	-	15	-	$mV_{\rm rms}$
	BW _{SM1}	V_{IN} =74dB μ , frequency at which output is reduced to $1/2$	-	±1.5	-	kHz
Signal Meter Band Width	BW _{SM2}	$V_{\rm IN}$ =74dB μ , frequency at which output is reduced to 1/10	-	-45/+7	-	kHz
Selectivity	Se1	f=±10kHz, WB _{AGC} :"OFF"	_	43	_	dB
IF Interference	IF_{I}	f=600kHz, WB _{AGC} :"OFF"	_	77.5	_	dB
Image Frequency Interference	IM_I	f=1400kHz, WB _{AGC} :"OFF"	-	52.0	-	dB

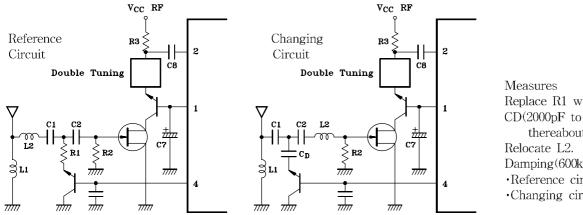
BLOCK DIAGRAM

TEST CIRCUIT


APPLICATION INFORMATION

- 1. Bias condition : RF $V_{CC} \leq IF V_{CC}$
- 2. Avoid coupling between the antenna tuning circuit and the local oscillator.
- 3. Connect detection capacitor C_{15} across pins 13(output) and 14(V_{CC}) so that no leakage of the IF signal to the GND line occurs. (If connected to GND, the tweet and the usable sensitivity may get worse.) Radiation from C₁₅ may cause harmonics in the IF signal to return to the RF stage, thereby leading to more tweet interference. So, connect C₁₅ as close to pins 13,14 as possible. Consider the direction of the capacitor and separate it from the ANT circuit.
- 4. For R₉, use a semifixed resistor with V_{SM} considered.
- 5. When designing the coils, consider the following conditions. The table is the input level at each pin at which the detection output as f_m =400Hz, 300% mod becomes -25dBm.

Table


stage	ANT	MIX	IF	DET
Input Level (dBµ)	16.0	28.0	45.0	61.0

Each stage is applied Input as shown below.

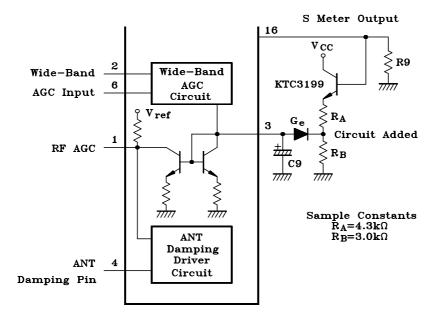
6. ANT damping

To make the ANT damping constant within the receiving band, change the application circuit as shown below.

Replace R1 whith CD. CD(2000pF to 3000pF or thereabouts) Damping(600kHz to 1400kHz)

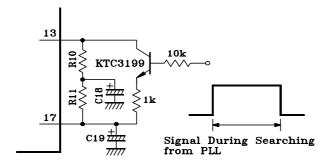
- •Reference circuit -15dB
- ·Changing circuit -4dB

7. Meaning of L₂

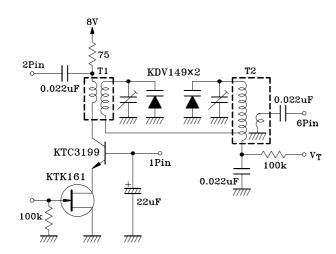

If the RF stage is double-tuned, the difference in sensitivity within the RF band almost disappears, but an antiresonance point of approximately 20MHz appears, thereby leading to worse spurious characteristic. So, L₂ is used to remove the SW band.

8. Wide-band AGC

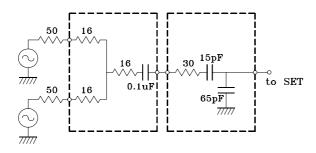
This IC contains 2-channel wide-band AGC. Pin 6 detects an undesired signal within the RF band and wide-band AGC is applied. This detection sensitivity is determined inside the IC. Pin 2 detects an undesired signal outside the RF band. This detection sensitivity is determined by R3. When 1mVrms(f=1MHz) signal is applied to pin 2, AGC operates.

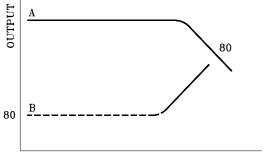

9. Measures against suppression of sensitivity

In the AGC circuit of the test circuit the presence of an undesired signal of high strength within the receiving band may cause the desired signal to be suppressed when the desired signal is low or medium in strength. Shown below is the circuit configuration where the necessary measures are taken against this suppression.



10. Transient response of S meter output at search, stop mode

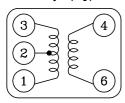

The circuit configuration shown below is available to stabilize the transient response
of the S meter output at the search, stop mode.


- 11. When using LW(approximately 50°C or greater), additionally connect a resistor of 27kΩ across pins 18 and 19 against increase in locall oscillation level. When using MW, no additional resistor is required.
- 12. Improvement in image frequency interference change the RF double-tuning coil as follows, and the image frequency interference becomes 63 dB at f=1400kHz (Q of the tuning circuit must not be decreased with tuning resistor $100 \mathrm{k}\,\Omega$)

13. Cross Modulation Characteristic Testing Method.

2-signal pad DUMMY ANT

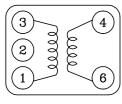
Solid line - Interference.


Dotted line · · · · · No Interference.

- A: Desired signal $80dB\mu$ 400Hz 30% mod. The stregth of an undesired signal(non-mod) causes the desired signal to be suppressed.
- B: Desired signal $80 {\rm dB}\mu$ non-mod. The strength of an undesired signal (400Hz 80% mod) causes interference to occur.

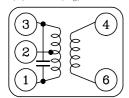
COIL DATA(BOTTOM VIEW)

1. RF Double Tuning Coil


Primary (T_1)

ITEM	$L(\mu H)$		Turns	
PIN NO.	1-3	1-2	2-3	6-4
Value	224	2	82	37

YT-30020(Mitsumi)


Secondary (T2)

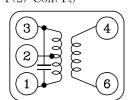
ITEM	L(µH)		Turns	
PIN NO.	1-3	1-2	2-3	6-4
Value	224	2	82	15

YT-30018(Mitsumi)

2. IFT(1) Coil (T₃)

High Selectivity Type

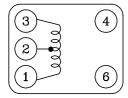
ITEM	C _O (pf)	f(kHz)	Qu(%)		Turns	
PIN NO.	1-3	=	1-3	1-2	2-3	6-4
Value	180	450	115	69	77	14


CFMA-027(Toko)

YT-30042(Mitsumi)

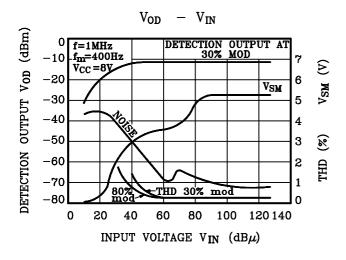
(3)	<u>4</u>	
(2)	الملا	
	6	

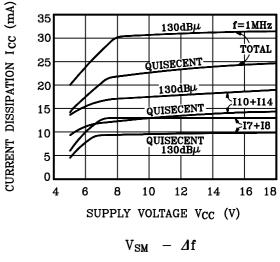
ITEM	C _O (pf)	f(kHz)	Qu(%)		Turns	
PIN NO.	1-3	-	1-3	1-2	2-3	6-4
Value	180	450	45	49	103	27


3. IFT(2) Coil(T₄)

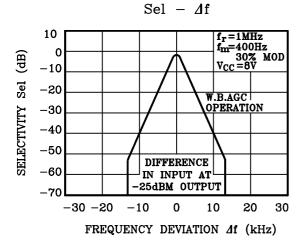
ITEM	C _O (pf)	f(kHz)	Qu(%)		Turns	
PIN NO.	1-3	-	1-3	1-2	2-3	6-4
Value	180	455	110	115	37	6

YT-30007(Mitsumi)

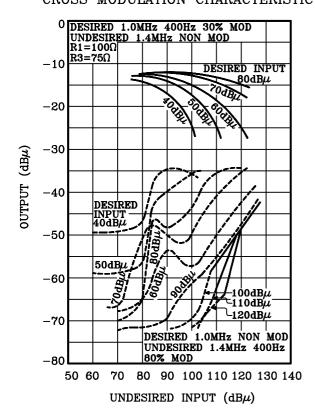

4. OSC Coil(T₅)

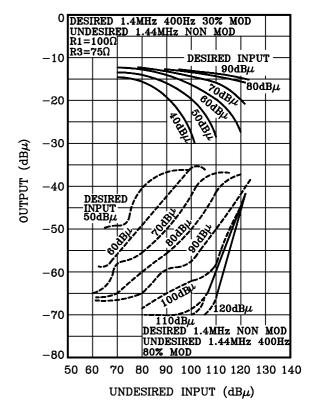


ITEM	$L(\mu H)$	Turns	
PIN NO.	1-3	1-2	2-3
Value	118	29	29


YT-30008(Mitsumi)

2000. 4. 19 Revision No : 1


 $I_{CC} - V_{CC}$



CROSS MODULATION CHARACTERISTIC

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.