

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications

74HC/HCT4066
 Quad bilateral switches

Product specification
Supersedes data of 1998 Oct 02
File under Integrated Circuits, IC06

Quad bilateral switches

74HC/HCT4066

FEATURES

- Very low "ON" resistance: 50Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ 45Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ 35Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$
- Output capability: non-standard
- I ICC category: SSI.

The 74HC/HCT4066 have four independent analog switches. Each switch has two input/output terminals (nY, $n Z$) and an active HIGH enable input ($n E$). When $n E$ is LOW the belonging analog switch is turned off.

The " 4066 " is pin compatible with the " 4016 " but exhibits a much lower "ON" resistance. In addition, the "ON" resistance is relatively constant over the full input signal range.

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4066$ are high-speed Si-gate CMOS devices and are pin compatible with the " 4066 " of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time nE to $\mathrm{V}_{\text {os }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	11	12	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time nE to $\mathrm{V}_{\text {os }}$		13	16	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	11	12	pF
C_{S}	max. switch capacitance		8	8	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu \mathrm{W}\right)$:
a) $P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
b) $f_{i}=$ input frequency in MHz
c) $\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
d) $\sum\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{0}\right\}=$ sum of outputs
e) $\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
f) $\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF
g) $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
74HC4066	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
74HC4066	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74HC4066	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74HC4066	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
74HCT4066	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
74HCT4066	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74HCT4066	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74HCT4066	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,4,8,11$	1 Y to 4 Y	independent inputs/outputs
$2,3,9,10$	$1 Z$ to 4 Z	independent inputs/outputs
7	GND	ground (0 V)
$13,5,6,12$	1 E to 4 E	enable inputs (active HIGH)
14	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

a.

b.

Fig. 3 IEC logic symbol.

Fig. 4 Functional diagram.

FUNCTION TABLE

INPUT NE	SWITCH
L	off
H	on

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level; $\mathrm{L}=\mathrm{LOW}$ voltage level.

Fig. 5 Schematic diagram (one switch).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to GND (GND = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	
V_{CC}	DC supply voltage	-0.5	+11.0	V	CONDITIONS
$\pm \mathrm{I}_{\mathrm{IK}}$	DC digital input diode current		20	mA	for $\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\mathrm{SK}}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\mathrm{IS}}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\mathrm{CC}}$ $\pm \mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or GND current		50	mA	
$\mathrm{~T}_{\text {Stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package				for temperature range: -40 to $+125^{\circ} \mathrm{C}$ $74 \mathrm{HC} / \mathrm{HCT}$ above $+70^{\circ} \mathrm{C}:$ derate linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $+70^{\circ} \mathrm{C}:$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
plastic DIL plastic mini-pack (SO)	750 P_{S}	power dissipation per switch		100	mW
mW					

Note

1. To avoid drawing V_{cc} current out of terminal nZ , when switch current flows in terminal nY , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $n Z$, no V_{cc} current will flow out of terminal nY . In this case there is no limit for the voltage drop across the switch, but the voltages at nY and nZ may not exceed V_{CC} or GND .

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
V_{CC}	DC supply voltage	2.0	5.0	10.0	4.5	5.0	5.5	V	
V_{1}	DC input voltage range	GND		$\mathrm{V}_{\text {cc }}$	GND		V_{CC}	V	
$\mathrm{V}_{\text {S }}$	DC switch voltage range	GND		V_{CC}	GND		V_{CC}	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	see DC and AC CHARACTERISTICS
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

DC CHARACTERISTICS FOR 74HC/HCT

For $74 \mathrm{HC}: \mathrm{V}_{\mathrm{CC}}=2.0,4.5,6.0$ and 9.0 V ; For 74 HCT : $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Note

1. At supply voltages approaching 2 V , the analog switch ON -resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

Fig. 6 Test circuit for measuring ON-resistance (Ron).

Fig. 7 Test circuit for measuring OFF-state current.

Fig. 8 Test circuit for measuring ON-state current.

Fig. 9 Typical ON-resistance (R_{ON}) as a function of input voltage $\left(\mathrm{V}_{\text {is }}\right)$ for $\mathrm{V}_{\text {is }}=0$ to V_{CC}.

Quad bilateral switches
74HC/HCT4066

DC CHARACTERISTICS FOR 74HC

Voltage are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								$V_{c c}$ (V)	V_{1}	OTHER
		+25			-40 to +85		$\begin{gathered} -40 \text { to } \\ +125 \end{gathered}$					
		min.	typ.	max.	min.	max.	min.	max				
V_{IH}	HIGH-level input voltage	$\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$	$\begin{aligned} & \hline 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.7 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		V	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$		
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		$\begin{aligned} & \hline 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 1.35 \\ & 1.80 \\ & 2.70 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.35 \\ & 1.80 \\ & 2.70 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 1.35 \\ & 1.80 \\ & 2.70 \end{aligned}$	V	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$		
± 1	input leakage current			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	V_{CC} or GND	
$\pm \mathrm{I}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	V_{IH} or VIL	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.7) } \end{aligned}$
$\pm{ }^{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	V_{IH} or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.8) } \end{aligned}$
ICC	quiescent supply current			$\begin{aligned} & \hline 2.0 \\ & 4.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 20.0 \\ 40.0 \end{array}$		$\begin{aligned} & 40.0 \\ & 80.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 6.0 \\ 10.0 \end{array}$	$V_{C C}$ or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\text { GND or } \\ & \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\text {os }}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$

Quad bilateral switches

AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS	
		74HC								V_{Cc} (V)	OTHER
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / t_{\text {PLH }}$	propagation delay $V_{\text {is }}$ to $V_{\text {os }}$		8 3 2 2	$\begin{aligned} & 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time $n E$ to $V_{\text {os }}$		$\begin{aligned} & 36 \\ & 13 \\ & 10 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \\ & 13 \end{aligned}$		$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \\ & 16 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \\ & 20 \end{aligned}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19 \\ & \text { and 20) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time $n E$ to $V_{\text {os }}$		$\begin{aligned} & 44 \\ & 16 \\ & 13 \\ & 16 \end{aligned}$	$\begin{array}{\|l} \hline 150 \\ 30 \\ 26 \\ 24 \end{array}$		$\begin{array}{\|l} \hline 190 \\ 38 \\ 33 \\ 16 \end{array}$		$\begin{aligned} & 225 \\ & 45 \\ & 38 \\ & 20 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs } 19 \\ & \text { and 20) } \end{aligned}$

Quad bilateral switches
74HC/HCT4066

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								V_{Cc} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
V_{IH}	HIGH-level input voltage	2.0	1.6		2.0		2.0		V	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$		
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.2	0.8		0.8		0.8	V	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$		
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{IH} or $V_{\text {IL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.7) } \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	V_{IH} or $\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \\ & \text { (see Fig.8) } \end{aligned}$
I_{CC}	quiescent supply current			2.0		20.0		40.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 2.1 \mathrm{~V} \end{aligned}$	other inputs at $V_{C C}$ or GND

Note

1. The value of additional quiescent supply current $\left(\Delta l_{\mathrm{CC}}\right)$ for a unit load of 1 is given here. To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

Table 1

INPUT	UNIT LOAD COEFFICIENT
nE	1.00

AC CHARACTERISTICS FOR 74HCT

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	Tamb (${ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS	
		74HCT								V_{Cc} (V)	OTHER
		+25			-40 to +85		-40 to +125				
		min.	typ.	max.	min.	max.	min.	max.			
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$		3	12		15		18	ns	4.5	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn-on time nE to $\mathrm{V}_{\text {os }}$		12	24		30		36	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\text { (see Figs } 19 \text { and } 20 \text {) }$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn-off time nE to $\mathrm{V}_{\text {os }}$		20	35		44		53	ns	4.5	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 19 and 20)

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT
Recommended conditions and typical values GND $=0 \mathrm{~V}$; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	TYP.	UNIT	V_{Cc} (V)	$\mathrm{V}_{\mathrm{IS}(\mathrm{p}-\mathrm{p})}$ (V)	CONDITIONS
	sine wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.04 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 9.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ 8.0 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.16) } \end{aligned}$
	sine wave distortion $\mathrm{f}=10 \mathrm{kHz}$	$\begin{aligned} & 0.12 \\ & 0.06 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 16 \text {) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Figs } 10 \text { and 17) } \end{aligned}$
	crosstalk between any two switches	$\begin{array}{\|l\|} \hline-60 \\ -60 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 3	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Fig. } 12 \text {) } \end{aligned}$
$\mathrm{V}_{(p-p)}$	crosstalk voltage between enable or address input to any switch (peak-to-peak value)	$\begin{aligned} & 110 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$		$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{f}=1 \mathrm{MHz}(\mathrm{nE}$, square wave between V_{CC} and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$) (see Fig.14)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 \mathrm{~dB})$	$\begin{aligned} & 180 \\ & 200 \end{aligned}$	MHz MHz	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	note 4	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 11 and 15)
C_{S}	maximum switch capacitance	8	pF			

Notes

1. $\mathrm{V}_{\text {is }}$ is the input voltage at nY or $n Z$ terminal, whichever is assigned as an input.
2. $\mathrm{V}_{\text {os }}$ is the output voltage at nY or nZ terminal, whichever is assigned as an output.
3. Adjust input voltage $\mathrm{V}_{\text {is }}$ is 0 dBM level ($0 \mathrm{dBM}=1 \mathrm{~mW}$ into 600Ω).
4. Adjust input voltage $\mathrm{V}_{\text {is }}$ is 0 dBM level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBM}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig. 12 Test circuit for measuring crosstalk between any two switches; channel ON condition.

Fig. 13 Test circuit for measuring crosstalk between any two switches; channel OFF condition.

The crosstalk is defined as follows (oscilloscope output):

Fig. 14 Test circuit for measuring crosstalk between control and any switch.

Adjust input voltage to obtain 0 dBM at $\mathrm{V}_{\text {os }}$ when $f_{\text {in }}=1 \mathrm{MHz}$. After set-up frequency of $f_{\text {in }}$ is increased to obtain a reading of -3 dB at $\mathrm{V}_{\text {os }}$.

Fig. 15 Test circuit for measuring minimum frequency response.

Fig. 16 Test circuit for measuring sine wave distortion.

Fig. 17 Test circuit for measuring switch "OFF" signal feed-through.

AC WAVEFORMS

(1) $\mathrm{HC}: \mathrm{V}_{\mathrm{M}}=50 \% ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{HCT}: \mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 18 Waveforms showing the input $\left(\mathrm{V}_{\mathrm{is}}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays.

Fig. 19 Waveforms showing the turn-on and turn-off times.

TEST CIRCUIT AND WAVEFORMS

Fig. 20 Test circuit for measuring AC performance.

Table 2 Conditions

TEST	SWITCH	$\mathrm{V}_{\text {IS }}$
$\mathrm{t}_{\text {PZH }}$	GND	V_{CC}
$\mathrm{t}_{\text {PZL }}$	V_{CC}	GND
$\mathrm{t}_{\text {PHZ }}$	GND	V_{CC}
$\mathrm{t}_{\text {PLZ }}$	V_{CC}	GND
others	open	pulse

Table 3 Definitions for Figs 20 and 21:

SYMBOL

DEFINITION

$C_{L} \quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values)
$R_{T} \quad$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator
$t_{r} \quad t_{f}=6 \mathrm{~ns}$, when measuring $f_{\text {max }}$, there is no constraint on t_{r}, t_{f} with 50% duty factor

Fig. 21 Input pulse definitions.

Table 4

FAMILY		$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$		
	AMPLITUDE		$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
74 HC			$<2 \mathrm{~ns}$	6 ns
74 HCT	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	$\stackrel{A_{1}}{\mathbf{A}}$ min.	$\underset{\mathrm{A}_{2}}{\mathrm{x}}$ max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\mathbf{Z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.2
inches	0.17	0.020	0.13	$\begin{aligned} & \hline 0.068 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & \hline 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT27-1	050G04	MO-001AA		$\square \oplus$	$\begin{aligned} & 92-11-17 \\ & 95-03-11 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\left\|\begin{array}{l} 0.0100 \\ 0.0075 \end{array}\right\|$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT108-1	076E06S	MS-012AB		\square ($\begin{aligned} & -95-01-23 \\ & 97-05-22 \end{aligned}$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	6.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	1.4	8°
	0.05	1.65			0.09	6.0	5.2	0.6	7.6			0.7				0.9	0°	

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		$-95-02-04$	
		MO-150AB			-	$96-01-18$

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30 0.05	0.80	0.2	5.1 0.19	4.5	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT402-1		MO-153			-	$94-07-12$
$95-04-04$						

SOLDERING

Introduction

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Through-hole mount packages

Soldering by dipping or by solder wave
The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joints for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg(max) }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between
300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

Surface mount packages

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $230^{\circ} \mathrm{C}$.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

MANUAL SOLDERING

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Suitability of IC packages for wave, reflow and dipping soldering methods

MOUNTING	PACKAGE	SOLDERING METHOD		
		WAVE	REFLOW ${ }^{(1)}$	DIPPING
Through-hole mount	DBS, DIP, HDIP, SDIP, SIL	suitable ${ }^{(2)}$	-	suitable
Surface mount	```HLQFP, HSQFP, HSOP, SMS PLCC(\({ }^{(4)}\), SO LQFP, QFP, TQFP SQFP SSOP, TSSOP, VSO```	not suitable ${ }^{(3)}$ suitable not recommended ${ }^{(4)(5)}$ not suitable not recommended ${ }^{(6)}$	suitable suitable suitable suitable suitable	

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773

Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +453288 2636, Fax. +4531570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, JI. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381

Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SAO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +441817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

