National Semiconductor

LM2907/LM2917 Frequency to Voltage Converter

General Description

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.

Advantages

- Output swings to ground for zero frequency input
- Easy to use; $V_{OUT} = f_{IN} \times V_{CC} \times R1 \times C1$
- Only one RC network provides frequency doubling
- Zener regulator on chip allows accurate and stable frequency to voltage or current conversion (LM2917)

Features

- Ground referenced tachometer input interfaces directly with variable reluctance magnetic pickups
- Op amp/comparator has floating transistor output
- 50 mA sink or source to operate relays, solenoids, meters, or LEDs

- Frequency doubling for low ripple
- Tachometer has built-in hysteresis with either differen-tial input or ground referenced input
- Built-in zener on LM2917
- $\pm 0.3\%$ linearity typical
- Ground referenced tachometer is fully protected from damage due to swings above $V_{\mbox{CC}}$ and below ground

Applications

- Over/under speed sensing
- Frequency to voltage conversion (tachometer)
- Speedometers
- Breaker point dwell meters
- Hand-held tachometer
- Speed governors
- Cruise control
- Automotive door lock control
- Clutch control
- Horn control
- Touch or sound switches

Block and Connection Diagrams Dual-In-Line and Small Outline Packages, Top Views

© 1995 National Semiconductor Corporation TL/H/7942 RRD-B30M115/Printed in U. S. A.

LM2907/LM2917 Frequency to Voltage Converter

Absolute Maximum Ratin	GS (Note 1) es are required,	Power Dissipation		
please contact the National Semic	conductor Sales	LM2907-8, LM2917-8	1200 mW	
Supply Voltage	28V	(See Note 1)	1300 1110	
Supply Current (Zener Options)	25 mA	Operating Temperature Range	-40°C to +85°C	
Collector Voltage	28V	Storage Temperature Range	-65°C to +150°C	
Differential Input Voltage Tachometer Op Amp/Comparator	28V 28V	Soldering Information Dual-In-Line Package Soldering (10 seconds) Small Outline Package	260°C	
Tachometer I M2907-8 M2917-8	+ 28\/	Vapor Phase (60 seconds)	215°C	
I M2907 M2917	$0.0V \text{ to } \pm 28V$	Infrared (15 seconds)	220°C	
Op Amp/Comparator	0.0V to +28V	See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering sur- face mount devices.		

Electrical Characteristics $V_{CC} = 12 V_{DC}$, $T_A = 25^{\circ}$ C, see test circuit

Symbol	Parameter	Conditions	Min	Тур	Max	Units
ТАСНОМЕТ	ER					
	Input Thresholds	V _{IN} = 250 mVp-p @ 1 kHz (Note 2)	±10	±25	±40	mV
	Hysteresis	V _{IN} = 250 mVp-p @ 1 kHz (Note 2)		30		mV
	Offset Voltage LM2907/LM2917 LM2907-8/LM2917-8	V _{IN} = 250 mVp-p @ 1 kHz (Note 2)		3.5 5	10 15	mV mV
	Input Bias Current	$V_{IN} = \pm 50 \text{ mV}_{DC}$		0.1	1	μΑ
V _{OH}	Pin 2	$V_{IN} = +125 \text{ mV}_{DC}$ (Note 3)		8.3		V
V _{OL}	Pin 2	$V_{IN} = -125 \text{ mV}_{DC}$ (Note 3)		2.3		V
I ₂ , I ₃	Output Current	V2 = V3 = 6.0V (Note 4)	140	180	240	μΑ
l ₃	Leakage Current	12 = 0, V3 = 0			0.1	μΑ
К	Gain Constant	(Note 3)	0.9	1.0	1.1	
	Linearity	$f_{IN} = 1$ kHz, 5 kHz, 10 kHz (Note 5)	-1.0	0.3	+ 1.0	%
OP/AMP CO	OMPARATOR	-				
V _{OS}		$V_{IN} = 6.0V$		3	10	mV
IBIAS		$V_{IN} = 6.0V$		50	500	nA
	Input Common-Mode Voltage		0		V _{CC} -1.5V	V
	Voltage Gain			200		V/mV
	Output Sink Current	$V_{\rm C} = 1.0$	40	50		mA
	Output Source Current	$V_{E} = V_{CC} - 2.0$		10		mA
Saturation Voltage	Saturation Voltage	I _{SINK} = 5 mA		0.1	0.5	V
		$I_{SINK} = 20 \text{ mA}$			1.0	V
	$I_{SINK} = 50 \text{ mA}$		1.0	1.5	V	

Electrical Characteristics $V_{CC} = 12 V_{DC}$, $T_A = 25^{\circ}C$, see test circuit (Continued)								
Parameter	Conditions	Min	Тур	Max	Units			
ATOR								
Regulator Voltage	$R_{DROP} = 470\Omega$		7.56		V			
Series Resistance			10.5	15	Ω			
Temperature Stability			+ 1		mV/°C			
TOTAL SUPPLY CURRENT			3.8	6	mA			
	ATOR Regulator Voltage Series Resistance Temperature Stability TOTAL SUPPLY CURRENT	Parameter V _{CC} = 12 V _{DC} , T _A = 25°C, see Parameter Conditions ATOR Regulator Voltage R _{DROP} = 470 Ω Series Resistance Image: Constraint of the second	Al Characteristics $V_{CC} = 12 V_{DC}$, $T_A = 25^{\circ}C$, see test circuit (O Parameter Conditions Min ATOR Regulator Voltage $R_{DROP} = 470\Omega$ Series Resistance Temperature Stability TOTAL SUPPLY CURRENT Image: Condition of the second sec	Parameter Conditions Min Typ ATOR Regulator Voltage R _{DROP} = 470Ω 7.56 Series Resistance 10.5 10.5 Temperature Stability +1 10700000000000000000000000000000000000	Parameter Conditions Min Typ Max ATOR Regulator Voltage R _{DROP} = 470Ω 7.56 10.5 15 Series Resistance 10.5 15 15 Temperature Stability +1 1000000000000000000000000000000000000			

Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 101°C/W junction to ambient for LM2907-8 and LM2917-8, and 79°C/W junction to ambient for LM2907-14 and LM2917-14.

Note 2: Hysteresis is the sum $+V_{TH} - (-V_{TH})$, offset voltage is their difference. See test circuit.

Note 3: V_{OH} is equal to $\frac{3}{4} \times V_{CC} - 1$ V_{BE}, V_{OL} is equal to $\frac{1}{4} \times V_{CC} - 1$ V_{BE} therefore V_{OH} - V_{OL} = V_{CC}/2. The difference, V_{OH} - V_{OL}, and the mirror gain, I_2/I_3 , are the two factors that cause the tachometer gain constant to vary from 1.0.

Note 4: Be sure when choosing the time constant R1 \times C1 that R1 is such that the maximum anticipated output voltage at pin 3 can be reached with I₃ \times R1. The maximum value for R1 is limited by the output resistance of pin 3 which is greater than 10 M Ω typically.

Note 5: Nonlinearity is defined as the deviation of V_{OUT} (@ pin 3) for $f_{IN} = 5$ kHz from a straight line defined by the V_{OUT} @ 1 kHz and V_{OUT} @ 10 kHz. C1 = 1000 pF, R1 = 68k and C2 = 0.22 mFd.

General Description (Continued)

The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA. The collector may be taken above $V_{CC}\xspace$ up to a maximum V_{CE} of 28V.

The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.

Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequency to current operations are possible with any supply voltage and a suitable resistor.

Tachometer Input Threshold Measurement

Applications Information

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit. The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input internally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single input is also fully protected against voltage swings to $\pm 28V$, which are easily attained with these types of pickups.

The differential input options (LM2907, LM2917) give the user the option of setting his own input switching level and still have the hysteresis around that level for excellent noise rejection in any application. Of course in order to allow the inputs to attain common-mode voltages above ground, input protection is removed and neither input should be taken outside the limits of the supply voltage being used. It is very important that an input not go below ground without some resistance in its lead to limit the current that will then flow in the epi-substrate diode.

Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input) the timing capacitor is either charged or discharged linearly between two voltages whose difference is $V_{\rm CC}/2$. Then in one half cycle of the input frequency or a time equal to $1/2 \,$ f_{IN} the change in charge on the timing capacitor is equal to $V_{\rm CC}/2 \times$ C1. The average amount of current pumped into or out of the capacitor then is:

$$\frac{\Delta Q}{T} = i_{\text{c(AVG)}} = \text{C1} \times \frac{\text{V}_{\text{CC}}}{2} \times (2f_{\text{IN}}) = \text{V}_{\text{CC}} \times f_{\text{IN}} \times \text{C1}$$

The output circuit mirrors this current very accurately into the load resistor R1, connected to ground, such that if the pulses of current are integrated with a filter capacitor, then $V_0 = i_c \times R1$, and the total conversion equation becomes: $V_0 = V_{CC} \times f_{IN} \times C1 \times R1 \times K$

Typical Applications

The size of C2 is dependent only on the amount of ripple voltage allowable and the required response time.

CHOOSING R1 AND C1

There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 500 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore $V_O/R1$ must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output ripple voltage must be considered and the size of C2 is affected by R1. An expression that describes the ripple content on pin 3 for a single R1C2 combination is:

$$V_{\text{RIPPLE}} = \frac{V_{\text{CC}}}{2} \times \frac{\text{C1}}{\text{C2}} \times \left(1 - \frac{V_{\text{CC}} \times f_{\text{IN}} \times \text{C1}}{\text{I}_2}\right) \text{pk-pk}$$

It appears R1 can be chosen independent of ripple, however response time, or the time it takes V_{OUT} to stabilize at a new voltage increases as the size of C2 increases, so a compromise between ripple, response time, and linearity must be chosen carefully.

As a final consideration, the maximum attainable input frequency is determined by V_CC, C1 and I_2:

$$f_{MAX} = \frac{I_2}{C1 \times V_{CC}}$$

USING ZENER REGULATED OPTIONS (LM2917)

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the LM2917 is offered. The most important consideration in choosing a dropping resistor from the unregulated supply to the device is that the tachometer and op amp circuitry alone require about 3 mA at the voltage level provided by the zener. At low supply voltages there must be some current flowing in the resistor above the 3 mA circuit current to operate the regulator. As an example, if the raw supply varies from 9V to 16V, a resistance of 470 Ω will minimize the zener voltage variation to 160 mV. If the resistance goes under 400 Ω or over 600 Ω the zener variation.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.