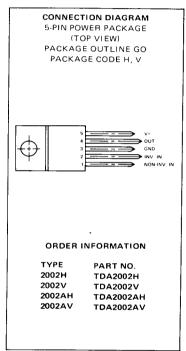
TDA2002 • TDA2002A

8 WATT AUDIO POWER AMPLIFIERS

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The TDA2002 and TDA2002A are monolithic integrated circuits designed for class B audio power amplifier applications using low impedance loads (down to 1.6 Ω). They are constructed using the Fairchild Planar* epitaxial process. The devices typically provide 8 W at 14.4 V, 2 Ω and 6.5 W at 16 V, 4 Ω .

The TDA2002 and TDA2002A are provided in a 5-pin power package, with two pin configurations (H and V) for ease in mounting either horizontally or vertically in the PC board.


The TDA2002A is the same electrically as the TDA2002 except it does not include the overvoltage (Load dump) protection circuit.

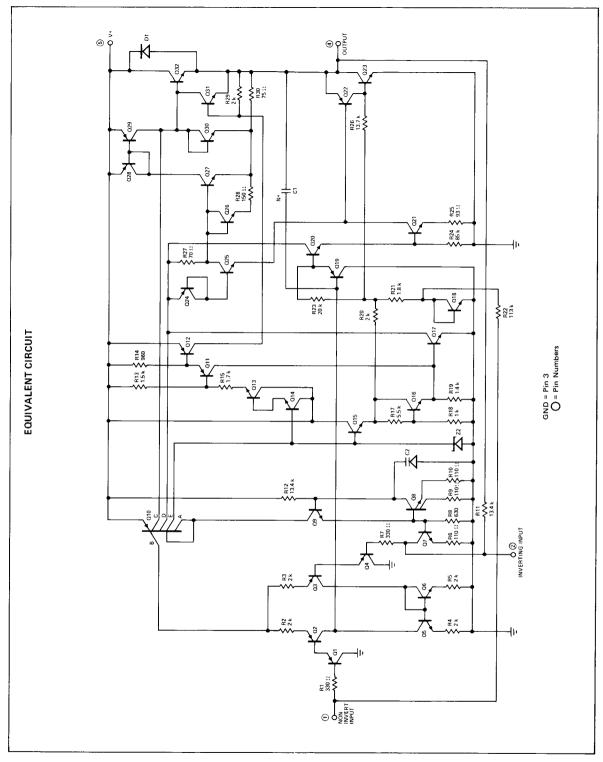
- THERMAL SHUT DOWN
- SHORT CIRCUIT PROTECTION (AC)
- OVERVOLTAGE PROTECTION (TDA2002)
- LOW EXTERNAL COMPONENTS
- HIGH CURRENT CAPABILITY (3.5 A)
- MINIMUM SPACE REQUIREMENT
- WIDE SUPPLY VOLTAGE RANGE (8 V to 18 V)

ABSOLUTE MAXIMUM RATINGS

	1 DA2002	1 DA2002A
Peak Supply Voltage (50 ms)	40 V	
Supply Voltage	28 V	28 V
Operating Supply Voltage	18 V	18 V
Output Current (Repetitive)	3.5 A	3.5 A
Output Current (Non-Repetitive)	4.5 A	4.5 A
Power Dissipation: at $T_C = 90^{\circ}C$	15 W	15 W
Storage Temperature	-40 to 150° C	-40 to 150° C
Pin Temperature (Soldering, 10 s)	260°C	260°C

TD 4 2002

[·] Planar is a patented Fairchild Process.

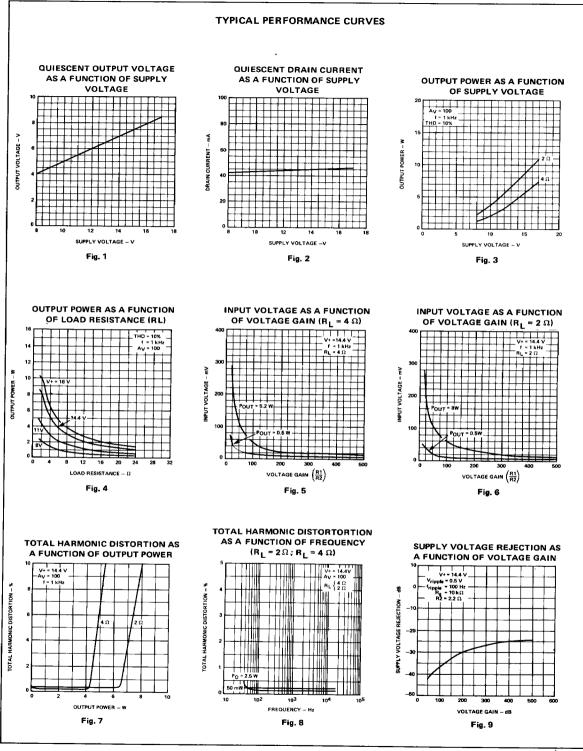

THERMAL DATA

 θ JC Thermal resistance junction to case (max) 4° C/W

4-261

TD 4 0000 4

FAIRCHILD • TDA2002 • TDA2002A


4-262

FAIRCHILD • TDA2002 • TDA2002A

Quiescent Output Voltage (Pin 4) 6.4 7.2 8.0 V (Pin 4) 45 80 mA (Pin 5) THD = 10% Ay = 100 f = 1 kHz 6.5 W Power Output THD = 10% Ay = 100 f = 1 kHz 6.5 W V+ = 16 V R L = 2Ω 10 W W V+ = 164 V R L = 2Ω 4.8 5.2 W V+ = 14.44 V R L = 2Ω 7 8 W Input Saturation Voltage 600 mV mV Imput Sensitivity Ay = 100 f = 1 kHz 15 mV POUT = 5.W RL = 4Ω 15 mV mV Frequency Response RL = 4Ω 55 mV POUT = 8.W RL = 2Ω 50 mV mV Frequency Response RL = 4Ω 55 mV -3 dB) Re Figs 15, 19 50 mV Frequency Response RL = 4Ω 0.2 % -3 dB) Re Figs 15, 19 0.2 % Fotal Harmonic Distortion Ay = 100 f = 1 kHz 0.2 <th>CHARACTERISTICS</th> <th>TEST CONDITIONS</th> <th>MIN</th> <th>TYP</th> <th>MAX</th> <th>UNITS</th>	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
	Quiescent Output Voltage					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Pin 4)	<u> </u>		/ /	0.0	'
Prower Output THD = 10% Ay = 100 f = 1 kHz	Quiescent Drain Current			45	80	mA
$V + = 16 V R_L = 4\Omega \\ V + = 16 V R_L = 2\Omega \\ V + = 14.4 V R_L =$	(Pin 5)					,,,,
$V + = 16 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 2 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ \Omega \\ V + = 14.4 \ V \ R_L = 4 \ U \\ V + = 14.4 \ R_L = 4 \ U \\ V + = 14.4 \ R_L = 4 \ U \\ V + = 14.4 \ R_L = 4 \ U \\ V + = 14.4 \ R_L = 4 \ U \\ V + = 14.4 \ R_L = 4 \ U \\ V + = 14.4 \ U \ R_L = 4 \ U \\ V + = 14.4 \ U \ R_L = 4 \ U \\ V + = 14.4 \ U \ R_L = 4 \ U \ R_L = 4$	Power Output	THD = 10% A _V = 100 f = 1 kHz				
$V+ = 16 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 4 \ \Omega \ V+ = 14.4 \ V \ R_L = 4 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 4 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ \Omega \ V+ = 14.4 \ V \ R_L = 2 \ U+ = 14.4 $		V+ = 16 V R _L = 4 Ω	•	6.5		w
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V+ = 16 V R _L = 2 Ω				
Note that the state of the s		V+ = 14.4 V R _L = 4Ω	4.8	1		
Imput Saturation Voltage (crms) MV			J	1 .		1
Input Sensitivity	Input Saturation Voltage		600			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Sensitivity	A _V = 100 f = 1 kHz	<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	15		mV/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		POUT = .5 W R ₁ = 2Ω		I .		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		POUT =5.2 W R _L = 4Ω				
Frequency Response		POUT = 8 W R _L = 2 Ω				
	Frequency Response			+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(-3 dB)			15000		,,,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Harmonic Distortion	A _V = 100 f = 1 kHz	+			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		0.2		%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(R_{\perp} = 4\Omega)$				
$ (R_L = 2\Omega) $		P _{OUT} = 0.05-5 W		0.2		%
		(R _L = 2Ω)				,,,
	Input Resistance (Pin 1)	f = 1 kHz	70	150		kΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Voltage Gain			1		
	(open loop)	$f = 1 \text{ kHz R}_{\perp} = 4 \Omega$		80		dВ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(closed toop)	_	39.5	40	40.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Noise Voltage	BW (-3dB) = 40-15000 Hz		4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Note 1	L			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nput Noise Current			60		pA
POUT = 8 W RL = 4 Ω 58 % Supply Voltage Rejection Ratio AV = 100 RL = 4 Ω $R_g = 10 \text{ k}\Omega$ $R_{\text{ripple}} = 100 \text{ Hz}$ 30 35 dB	Efficiency	A _V = 100 f = 1 kHz				
supply Voltage Rejection Ratio $AV = 100 R_L = 4 \Omega$ $R_g = 10 k \Omega$ $f_{ripple} = 100 Hz$ $30 35 dB$		P _{OUT} = 5.2 W R _L = 4Ω		68		%
$H_g = 10 \text{ k}\Omega$ $f_{ripple} = 100 \text{ Hz}$ 30 35 dB		$P_{OUT} = 8 W$ $R_L = 4 \Omega$		58		%
f _{ripple} = 100 Hz 30 35 dB	Supply Voltage Rejection Ratio	AV = 100 R _L = 4 Ω				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$R_g = 10 \text{ k}\Omega$	1			
		f _{ripple} = 100 Hz	30	35		dB
		Vripple = 0.5 V				

Note 1: Bandwidth (-3 dB) of test equipment = 10-25000 Hz

FAIRCHILD • TDA2002 • TDA2002A

4-264

TYPICAL PERFORMANCE CURVES (Cont'd) POWER DISSIPATION AND POWER DISSIPATION AND **EFFICIENCY AS A FUNCTION** SUPPLY VOLTAGE REJECTION AS **EFFICIENCY AS A FUNCTION** OF OUTPUT POWER $(R_1 = 4 \Omega)$ OF OUTPUT POWER $(R_1 = 2 \Omega)$ A FUNCTION OF FREQUENCY SUPPLY VOLTAGE FREQUENCY - Hz OUTPUT POWER - W OUTPUT POWER -- W Fig. 10 Fia. 11 Fig. 12 MAXIMUM POWER DISSIPATION MAXIMUM ALLOWABLE POWER AS A FUNCTION OF SUPPLY **DISSIPATION AS A FUNCTION** CAPACITOR (CFB) AS A FUNCTION **VOLTAGE (SINE WAVE OPERATION)** OF AMBIENT TEMPERATURE OF GAIN (VARIOUS BANDWIDTHS) 100 APACITOR (CFB) SUPPLY VOLTAGE - V AMBIENT TEMPERATURE - °C VOLTAGE GAIN -(R1) Fig. 13 Fig. 14 Fig. 15 **OUTPUT POWER AND DRAIN OUTPUT POWER AND DRAIN CURRENT AS A FUNCTION OF** OPEN LOOP VOLTAGE GAIN **CURRENT AS A FUNCTION OF** CASE TEMPERATURE (R_L = 4 Ω) AS A FUNCTION OF FREQUENCY CASE TEMPERATURE $(R_1 = 2 \Omega)$ A OUTPUT POWER - A OUTPUT POWER DPEN LOOP VOLTAGE GAIN OUTPUT POWER - W CASE TEMPERATURE - °C CASE TEMPERATURE - °C Fig. 16 Fig. 17 Fig. 18

4-265

FAIRCHILD • IDA2002 • IDA2002A

DESIGN CONSIDERATIONS

The board layout of the TDA2002 and TDA2002A is critical to assure good stability. The layout shown in Figure 20 is recommended. If a different layout is used, it is important that the ground points of inputs 1 and 2 be well decoupled from the ground of the output. Pin lengths should be as short as possible.

The component values shown on the applications schematics are recommended. However, other values may be used, and Table 1 is intended to serve as a guide for the designer on the effect of changing component values.

No electrical insulation is needed between the package tab and the heat sink, if the heat sink is electrically isolated or is at ground potential.

	Recommended		Larger than	Smaller than
Component	value	Purpose	recommended value	recommended value
C1	10 μF	Input DC decoupling		Noise at switch-on, switch-off
C2	470 μF	Ripple rejection		Degradation of PSRR
C3	0.1 μF	Supply bypassing		Danger of oscillation
C4	1000 μF	Output coupl- ing to load		Higher low frequen- cy cutoff
C5	0.1 μF	Frequency stability		Danger of oscilla- ion at high fre- quencies with in- ductive loads
CFB	≃ 1/2 π B R 1	Upper frequen- cy cutoff	Lower bandwidth	Larger bandwidth
R1	(A _V - 1) · R2	Closed loop gain determi- nation		Increase of drain current
R2	2.2 Ω	Closed loop gain and PSRR determination	Degradation of PSRR	
R3	1 Ω	Frequency stability	Danger of oscilla- tion at high fre- quencies with in- ductive loads	
R _{FB}	≅ 20 R2	Upper frequen- cy cutoff	Poor high frequen- cy attenuation	Danger of oscilla- tion

TABLE 1

APPLICATIONS INFORMATION:

Several typical applications of the TDA2002 and TDA2002A are shown in this section, together with printed circuit board layouts.

Figures 19 and 20 show a typical circuit with CFB, RFB shown dashed. CFB and RFB may be used to adjust the bandwidth after the gain has been set by the ratio R1/R2. (See Figure 15).

Figures 23 and 24 show a typical 15 watt bridge circuit utilizing two devices. A potentiometer (P1) is included to balance the offset voltages between the two devices.

TYPICAL APPLICATION CIRCUIT

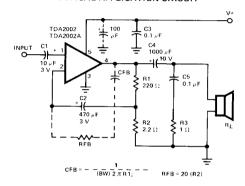


Fig. 19

P.C. BOARD AND COMPONENT LAYOUT FOR THE CIRCUIT OF FIG. 19 (1:1 SCALE)

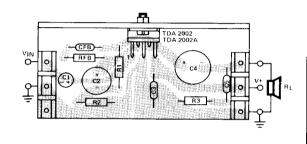


Fig. 20

LOW COST APPLICATION CIRCUIT

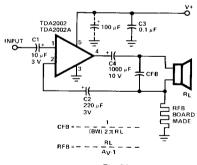


Fig. 21

P.C. BOARD AND COMPONENT LAYOUT FOR THE CIRCUIT OF FIG. 21 (1:1 SCALE)

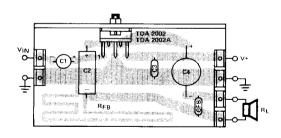


Fig. 22

15 WATT BRIDGE CIRCUIT

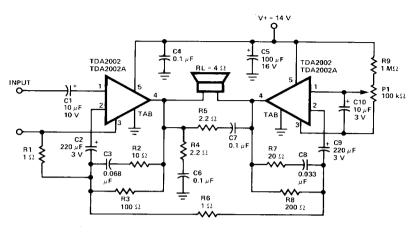


Fig. 23

P.C. BOARD AND COMPONENT LAYOUT FOR THE CIRCUIT OF FIG. 23 (1:1 SCALE)

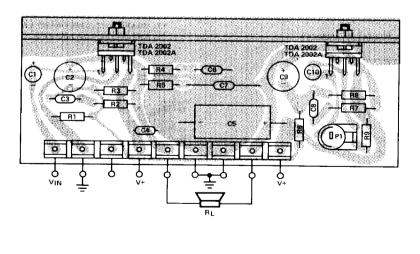


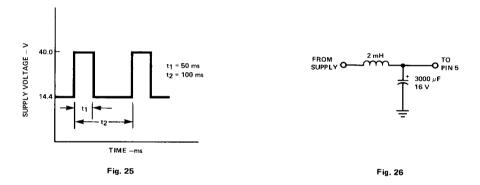
Fig. 24

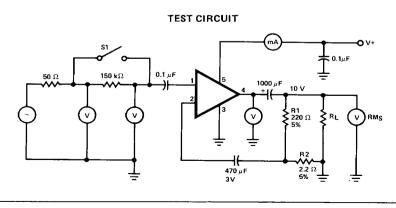
4-268

THERMAL SHUTDOWN

Both the TDA2002 and TDA2002A have been designed with a thermal shutdown feature. Typical curves of output power and supply current as a function of case temperature are shown in Figures 17 and 18. The thermal overload circuit reduces the drive to the output stage when the junction temperature exceeds the design threshold. The result is a reduced supply current and power output consistent with maintaining the junction temperature at the design limit.

The thermal overload feature offers several important advantages to the circuit designer:


- 1. The device can withstand excessive ambient temperatures (below 150° C) and temporary or permanent overloads on the output.
- The safety margin on the heat sink design may be reduced because the device will not be damaged by excessive junction temperature (below 150° C). The only result of this increased junction temperature will be a reduction in output power and supply current.


OVERVOLTAGE (LOAD DUMP) PROTECTION

The TDA2002 has been designed with a built-in circuit which enables this device to withstand a series of voltage spikes (see Figure 25). The load dump feature starts at about 18 V, so the operating voltage must not exceed 18 V.

This feature is particularly important in automobile applications, and the pulse train shown in Figure 25 is intended to simulate the voltage spikes which often occur on the supply line in automotive applications.

If the supply voltage peaks exceed 40 V, then an LC network must be inserted between the supply and Pin 5 to assure that the pulses at Pin 5 will not exceed the limits shown in Figure 25. A typical LC network is shown in Figure 26. With this network a train of pulses up to 120 V and 2 ms wide can be applied from the supply line.

4-269

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.