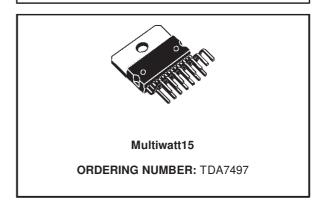
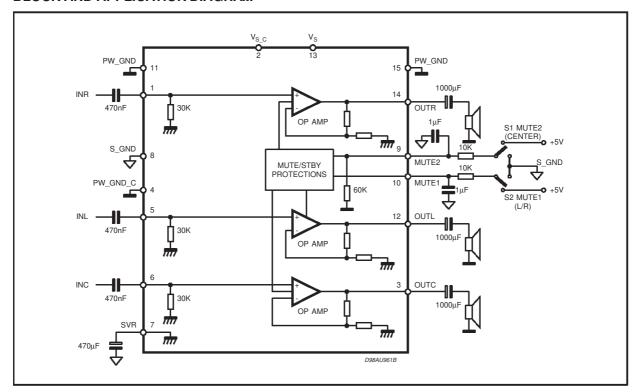


10W+10W+10W/15W TRIPLE AMPLIFIER


PRODUCT PREVIEW

- 10+10W (R_L = 8Ω) + 15W (R_L = 6Ω) or 10+10+10W (R_L = 8Ω) OUTPUT POWER @THD = 10% V_{CC} = 29V
- INDEPENDENT MUTE FOR CENTER CHAN-NEL AND MAIN CHANNELS
- NO TURN-ON TURN-OFF POP NOISE
- NO BOUCHEROT CELL
- SINGLE SUPPLY RANGING UP TO 35V
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION
- INTERNALLY FIXED GAIN
- SOFT CLIPPING
- MULTIWATT 15 PACKAGE

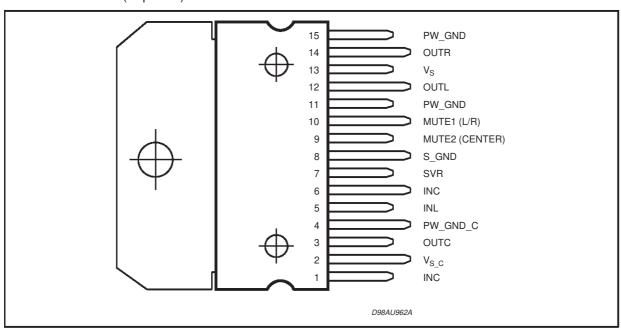
DESCRIPTION


The TDA7497 is a triple 10+10+10W/15W class AB power amplifier assembled in the @ Multiwatt 15 package, specially designed for high quality sound, TV applications.

MULTIPOWER BI50II TECHNOLOGY

Features of the TDA7497 include mute functions, independently controller for main and center channels.

BLOCK AND APPLICATION DIAGRAM


January 2000 1/5

ABSOLUTE MAXIMUM RATINGS

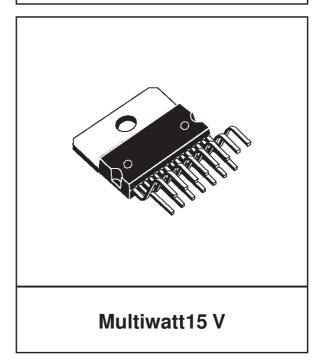
Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	40	V
P _{tot}	Total Power Dissipation (Tamb = 70°C)	20	W
Tamb	Ambient Operating Temperature (1)	0 to 70	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

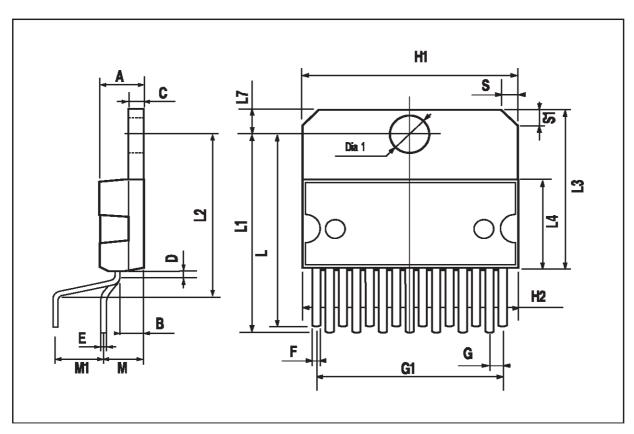
⁽¹⁾ Operation between -20 to 85 $^{\circ}\text{C}$ guaranteed by correlation with 0 to 70 $^{\circ}\text{C}.$

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter		Value	Unit
R _{th j-case}	Thermal Resistance Junction-case	Typ. = 1.3 Max. = 1.9	°C/W	
R _{th j-amb}	Thermal Resistance Junction-ambient max		35	°C/W


2/5


ELECTRICAL CHARACTERISTICS (Refer to the test circuit $V_S = 28V$; $R_L = 8\Omega$, $R_g = 50\Omega$, $T_{amb} = 25^{\circ}C$)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		11		35	V
Iq	Total Quiescent Current			100		mA
Vo	Quiescent Output Voltage		12.5	14	15.5	V
Po_L/R	Output Power Left / Right	THD = 10% ; $R_L = 8\Omega$; $V_S = 28V$	10	12		W
	Channels	THD = 1%; $R_L = 8\Omega$; $V_S = 28V$	7.8	9.3		W
		THD = 10%; $R_L = 4\Omega$; $V_S = 20V$	7	8		W
		THD = 1%; $R_L = 4\Omega$; $V_S = 20V$	5	6		W
		THD = 10% ; $R_L = 8\Omega$; $V_S = 18V$	3.5	3.8		W
		THD = 1%; $R_L = 8\Omega$; $V_S = 18V$	2.2	2.9		W
Po_c	Output Power Center Channel	THD = 10% ; R _L = 6Ω ; V _S = $28V$	15	17		W
		THD = 1%; $R_L = 6\Omega$; $V_S = 28V$	11.7	13.3		W
THD	Total Harmonic Distortion	$P_0 = 1W; f = 1KHz;$			0.4	%
lpeak L/R	Output Peak Current	(internally limited)	1.7	2.4		Α
lpeak C	Output Peak Current Central Channel	(internally limited)	2	2.8		А
Gv	Closed Loop Gain		29	30	31	dB
BW				0.6		MHz
eN	Total Output Noise	f = 20Hz to 22KHz		60	150	μV
SR	Slew Rate		5	8		V/μs
Ri	Input Resistance		22.5	30		ΚΩ
SVR	Supply Voltage Rejection	f = 1kHz $C_{SVR} = 470\mu F$; $V_{RIP} = 1V_{rms}$	35	39		dB
T _M	Thermal Muting			150		°C
Ts	Thermal Shut-down			160		°C
MUTE STA	ND-BY & INPUT SELECTION FUI	NCTIONS				
VMUTE1	Mute Threshold (L/R)		2.3	2.5	2.7	V
VMUTE2	Mute Threshold (Center only)		2.3	2.5	2.7	V
Амите	Mute Attenuation		50	65		dB
muteBIAS	Mute bias current	Mute		1	5	μΑ
	Mute1/Mute2	Play		0.2	2	μΑ

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
Е	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.02	1.27	1.52	0.040	0.050	0.060	
G1	17.53	17.78	18.03	0.690	0.700	0.710	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.870	0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.63	5.08	5.53	0.182	0.200	0.218	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

OUTLINE AND MECHANICAL DATA

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\, @ \,$ 2000 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.