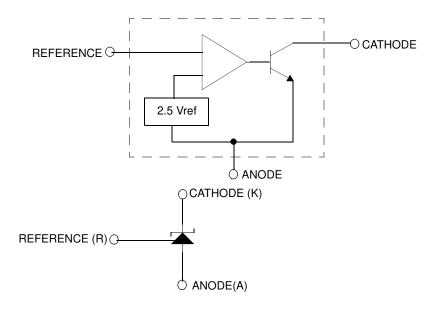

KA431/KA431A/KA431L Programmable Shunt Regulator

Features


- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance 0.20 Typical
- Sink Current Capability of 1.0 to 100mA
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Description

The KA431/KA431A/KA431L are three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors These devices have a typical dynamic output impedance of 0.2W Active output circuitry provides a very sharp turn on characteristic, making these devices excellent replacement for zener diodes in many applications.

Internal Block Diagram

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified.)

Parameter	Symbol	Value	Unit
Cathode Voltage	VKA	37	V
Cathode Current Range (Continuous)	IKA	-100 ~ +150	mA
Reference Input Current Range	IREF	0.05 ~ +10	mA
Power Dissipation D, Z Suffix Package DIP Package	PD	770 1000	mW mW
Junction Temperature	TJ	150	°C
Operating Temperature Range	Topr	-25 ~ +85	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Cathode Voltage	VKA	VREF	-	36	V
Cathode Current	IKA	1.0	-	100	mA

Electrical Characteristics

(TA = +25°C, unless otherwise specified)

Parameter Sym	Cumbal	0	KA431		KA431A		KA431L			11			
	Symbol	I Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reference Input Voltage	VREF	VKA=VREF, IKA=10mA		2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
Deviation of Reference Input Voltage Over- Temperature	ΔVREF/ ΔT	VKA=VREF, IKA=10mA TMIN≤TA≤TMAX		-	4.5	17	-	4.5	17	-	4.5	17	mV
Ratio of Change in Reference Input Voltage	ΔVREF/ ΔVKA	IKA =10mA	ΔVKA=10 V-VREF	-	-1.0	- 2.7	-	-1.0	- 2.7	-	-1.0	-2.7	mV/V
to the Change in Cathode Voltage			ΔVKA=36 V-10V	-	-0.5	-2.0	-	-0.5	-2.0	-	-0.5	-2.0	11110/0
Reference Input Current	IREF	IKA=10mA, R1=10kΩ,R2=∞		-	1.5	4	-	1.5	4	-	1.5	4	μΑ
Deviation of Reference Input Current Over Full Temperature Range	ΔIREF/ΔT	IKA=10mA, R1=10kΩ,R2=∞ TA =Full Range		-	0.4	1.2	-	0.4	1.2	-	0.4	1.2	μΑ
Minimum Cathode Current for Regulation	IKA(MIN)	VKA=VREF		-	0.45	1.0	-	0.45	1.0	-	0.45	1.0	mA
Off - Stage Cathode Current	IKA(OFF)	VKA=36V, VREF=0		-	0.05	1.0	-	0.05	1.0	-	0.05	1.0	μΑ
Dynamic Impedance	ZKA	VKA=VREF, IKA=1 to 100mA f ≥1.0kHz		-	0.15	0.5	-	0.15	0.5	-	0.15	0.5	Ω

[•] $T_{MIN} = -25^{\circ}C$, $T_{MAX} = +85^{\circ}C$

Test Circuits

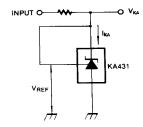


Figure 1. Test Circuit for VKA=VREF

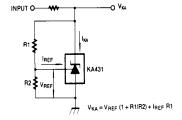


Figure 2. Test Circuit for VKA≥VREF

Figure 3. Test Circuit for IKA(OFF)

Typical Performance Characteristics

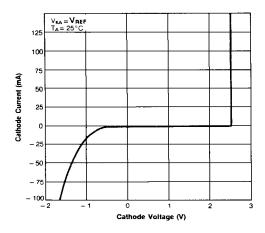


Figure 4. Cathode Current vs. Cathode Voltage

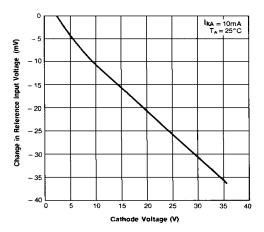


Figure 6. Change In Reference Input Voltage vs. Cathode Voltage

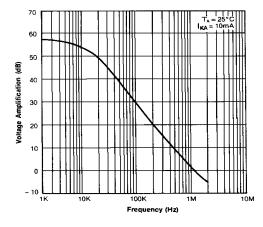


Figure 8. Small Signal Voltage Amplification vs. Frequency

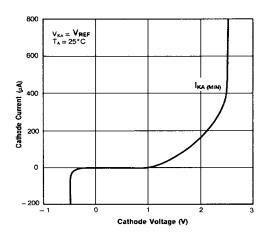


Figure 5. Cathode Current vs. Cathode Voltage

Figure 7. Dynamic Impedance Frequency

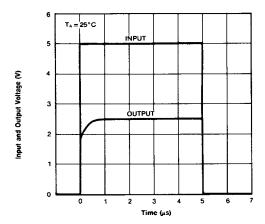


Figure 9. Pulse Response

Typical Performance Characteristics (Continued)

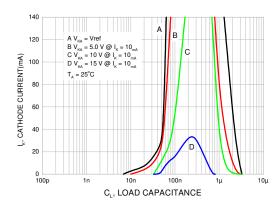
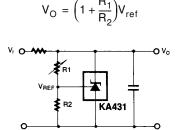



Figure 10. Stability Boundary Conditions

Typical Application

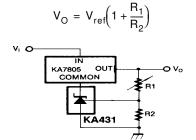


Figure 12. Output Control for Three-Ter minal Fixed Regulator

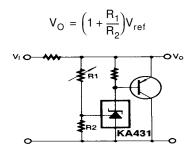


Figure 13. High Current Shunt Regulator

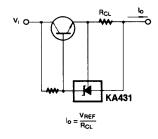
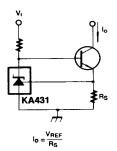
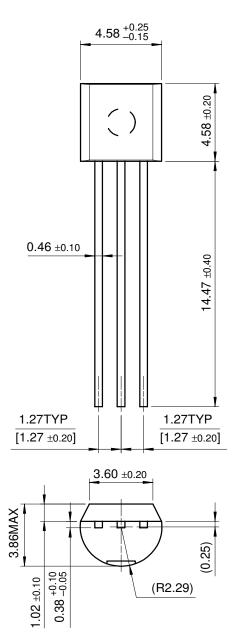
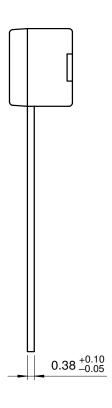


Figure 14. Current Limit or Current Source



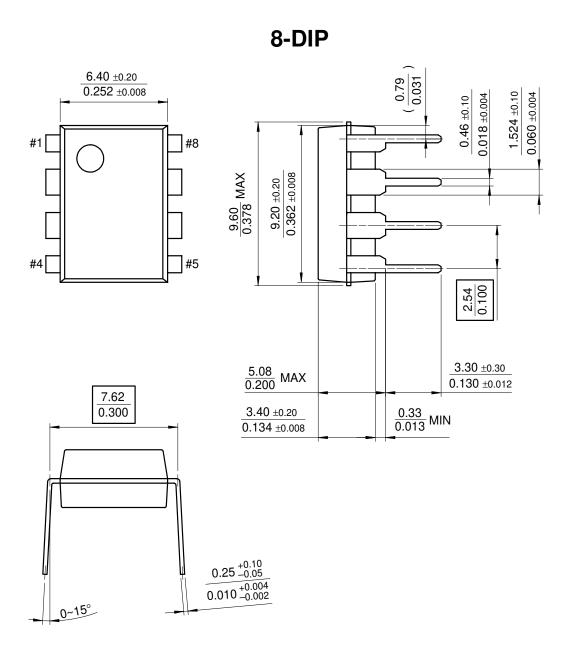

Figure 15. Constant-Current Sink


Mechanical Dimensions

Package

Dimensions in millimeters

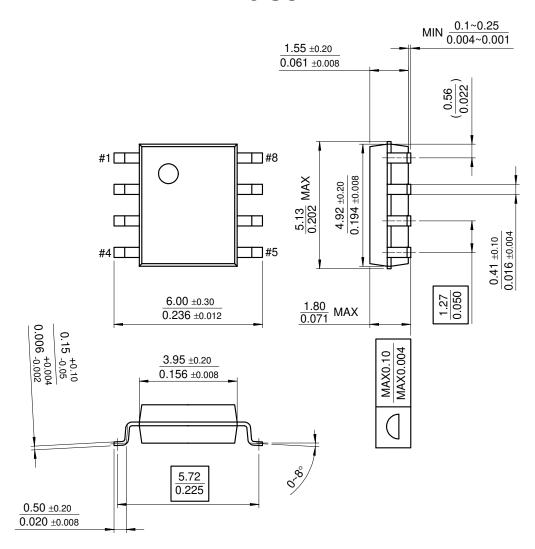
TO-92



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-SOP

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
KA431LZ	0.5%	TO-92	
KA431LD	0.5%	8-SOP	
KA431AZ	1%	TO-92	
KA431AD	1 76	8-SOP	-25 ~ +85°C
KA431		8-DIP	
KA431Z	2%	TO-92	
KA431D		8-SOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.