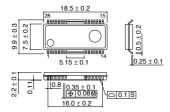
Current feedback actuator driver BA5954FP/FM


Description

BA5954FP/FM is an actuator driver IC for CD-ROM and DVD players. This actuator driver adopts current feedback system. This IC incorporates 2 channel actuator drivers and 2 channel motor drivers. Current phase lag influenced load inductance is little, because this type is current feedback.

Features

- 1) Wide dynamic range VoM4.0V(typ.) at PreVcc=12V,PVcc=5V,RL=8Ω
- 2) Level shift circuit built in.
- 3) Thermal-shut-down circuit built in.
- 4) Stand-by mode built in.

Dimension (Units : mm)

HSOP28 / HSOP-M28

Applications

CD/CD-ROM

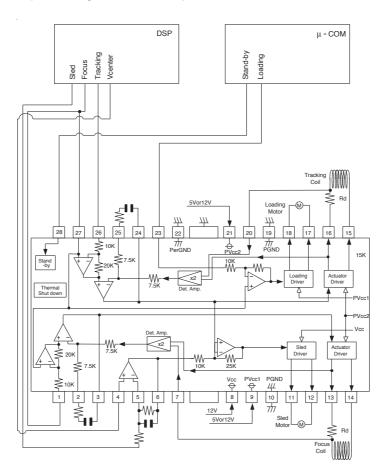
● Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Lin	Unit	
Supply voltage	Vcc, PVcc1/2	18	V	
Power dissipation	Pd	(BA5954FP) *1 1.7	(BA5954FM) *2 2.2	W
Operating temperature range	Topr	-35 -	°C	
Storage temperature range	Tstg	− 55 ^	~ + 150	°C

^{*} PCB (70mmx70mm, t=1.6mm) glass epoxy mounting.

Recommended Operating Conditions (Ta=25°C)

Parameter	Symbol	Limits	Unit
	Vcc	4.3 ~ 13.2	V
Power supply voltage	PVcc1	4.3 ~ Vcc	V
	PVcc2	4.3 ~ Vcc	V


^{*1} Derating: 13.6mW/°C for operation above Ta=25°C *2 Derating: 17.6mW/°C for operation above Ta=25°C

● Electrical characteristics (Unless otherwise noted; Ta=25°C, Vcc=12V, PVcc1=PVcc2=5V, BIAS=2.5V, RL=8Ω, Rd=0.5Ω, C=100pF)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Quiescent current	Icc	-	18	27	mA			
Stand-by quiescent current	Ist	_	_	0.5	mA			
Voltage for stand-by ON	Vston	_	_	0.5	V			
Voltage for stand-by OFF	Vstoff	2.0	_	_	V			
<actuator driver=""></actuator>								
Output offset voltage	loo	- 6	_	6	mV			
Maximum output amplitude	Vом	3.6	4.0	_	V			
Trans conductance	gm	1.3	1.5	1.7	A/V	VIN=BIAS±0.2V		
<sled driver="" motor="" op-amp="" pre=""></sled>								
Common mode input range	Vісм	-0.3	_	11.0	V			
Input bias current	Івор	ı	30	300	nA			
Low level output voltage	VOLOP	_	0.1	0.3	V			
Output source current	Iso	0.3	0.5	_	mA			
Output sink current	lsт	1	_	_	mA			
<sled driver="" motor=""></sled>								
Output offset voltage	Voofsl	- 100	0	100	mV			
Maximum output voltage	Vomld	7.5	9.0	_	V			
Closed loop voltage gain	GvsL	18.0	20.0	22.0	dB	VIN=±0.2V		
<loading driver="" motor=""></loading>								
Output offset voltage	Voofld	- 50	0	50	mV			
Maximum output voltage	Vomld	3.6	4.0	_	V			
Closed loop voltage gain	Gvld	13.5	15.5	17.5	dB	VIN=BIAS±0.2V		
Gain error by polarity	ΔG VLD	0	1	2	dB	VIN=BIAS±0.2V		

This product is not designed for protection against radioactive rays.

Application Circuit

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.