74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

Rev. 6 — 12 December 2011

Product data sheet

1. General description

The 74HC595; 74HCT595 are high-speed Si-gate CMOS devices and are pin compatible with Low-power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard No. 7A.

The 74HC595; 74HCT595 are 8-stage serial shift registers with a storage register and 3-state outputs. The registers have separate clocks.

Data is shifted on the positive-going transitions of the shift register clock input (SHCP). The data in each register is transferred to the storage register on a positive-going transition of the storage register clock input (STCP). If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.

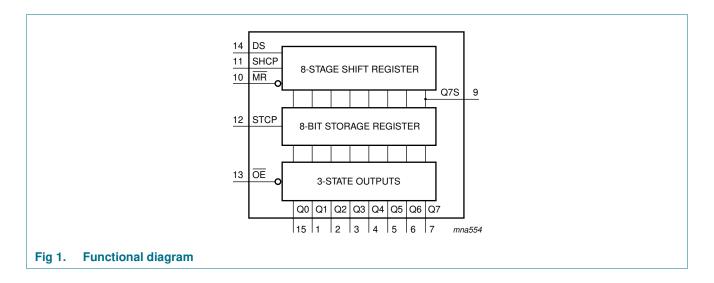
The shift register has a serial input (DS) and a serial standard output (Q7S) for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (\overline{OE}) is LOW.

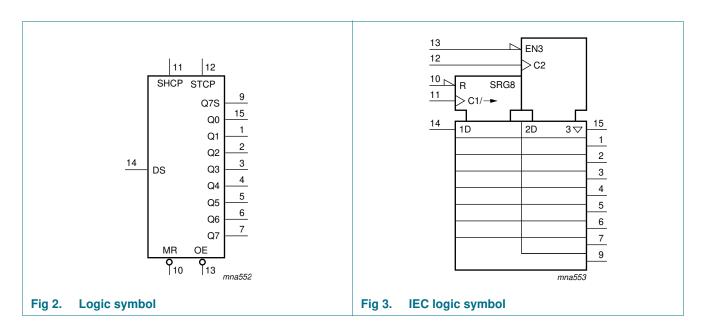
2. Features and benefits

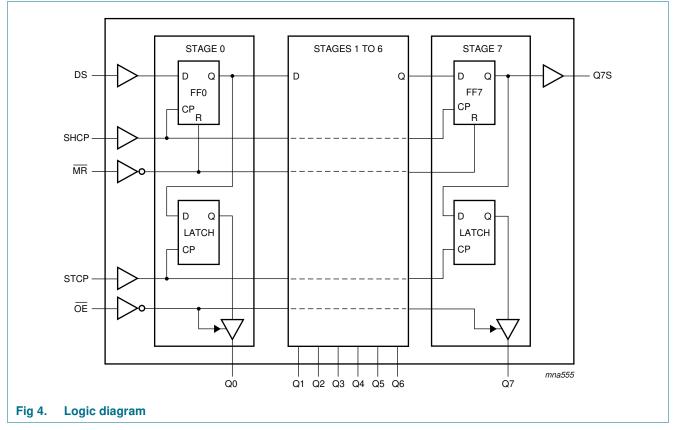
- 8-bit serial input
- 8-bit serial or parallel output
- Storage register with 3-state outputs
- Shift register with direct clear
- 100 MHz (typical) shift out frequency
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Applications

- Serial-to-parallel data conversion
- Remote control holding register

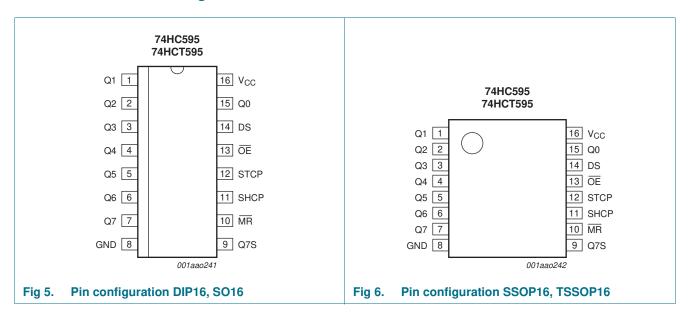


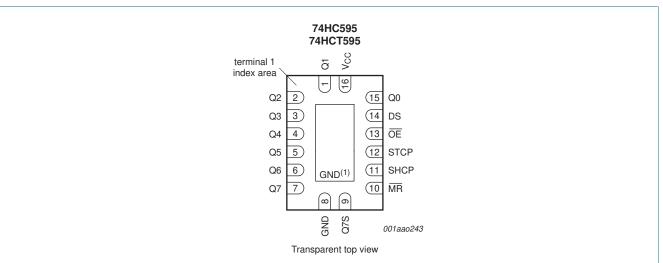

4. Ordering information


Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC595N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HCT595N				
74HC595D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1
74HCT595D			body width 3.9 mm	
74HC595DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads;	SOT338-1
74HCT595DB			body width 5.3 mm	
74HC595PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1
74HCT595PW			body width 4.4 mm	
74HC595BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced	SOT763-1
74HCT595BQ			very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	

5. Functional diagram





6. Pinning information

6.1 Pinning

(1) This is not a supply pin, the substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad however if it is soldered the solder land should remain floating or be connected to GND.

Fig 7. Pin configuration for DHVQFN16

6.2 Pin description

Table 2. Pin description

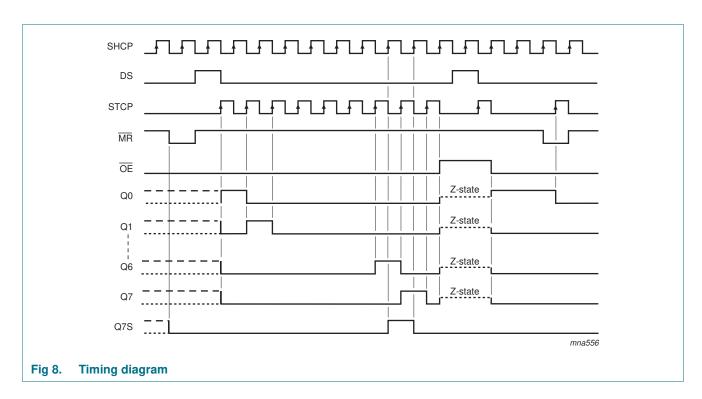
	i iii decomption	
Symbol	Pin	Description
Q1	1	parallel data output 1
Q2	2	parallel data output 2
Q3	3	parallel data output 3
Q4	4	parallel data output 4
Q5	5	parallel data output 5
Q6	6	parallel data output 6
Q7	7	parallel data output 7
GND	8	ground (0 V)
Q7S	9	serial data output
MR	10	master reset (active LOW)
SHCP	11	shift register clock input
STCP	12	storage register clock input
ŌĒ	13	output enable input (active LOW)
DS	14	serial data input
Q0	15	parallel data output 0
V_{CC}	16	supply voltage

7. Functional description

Table 3. Function table[1]

Contro	ol			Input	Outpu	t	Function
SHCP	STCP	OE	MR	DS	Q7S	Qn	
Χ	Χ	L	L	X	L	NC	a LOW-level on MR only affects the shift registers
Χ	↑	L	L	Χ	L	L	empty shift register loaded into storage register
X	Χ	Н	L	X	L	Z	shift register clear; parallel outputs in high-impedance OFF-state
↑	X	L	Н	Н	Q6S	NC	logic HIGH-level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q6S) appears on the serial output (Q7S).
Χ	↑	L	Н	X	NC	QnS	contents of shift register stages (internal QnS) are transferred to the storage register and parallel output stages
\uparrow	↑	L	Н	X	Q6S	QnS	contents of shift register shifted through; previous contents of the shift register is transferred to the storage register and the parallel output stages

^[1] H = HIGH voltage state;


L = LOW voltage state;

 $[\]uparrow$ = LOW-to-HIGH transition;

X = don't care;

NC = no change;

Z = high-impedance OFF-state.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _O	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$			
		pin Q7S	-	±25	mA
		pins Qn	-	±35	mA
I _{CC}	supply current		-	70	mA
I _{GND}	ground current		-70	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation				
	DIP16 package		[1] -	750	mW
	SO16 package		[2] _	500	mW
	SSOP16 package		[3] _	500	mW
	TSSOP16 package		[3] -	500	mW
	DHVQFN16 package		<u>[4]</u> -	500	mW

^[1] For DIP16 package: P_{tot} derates linearly with 12 mW/K above 70 °C.

74HC_HCT595

All information provided in this document is subject to legal disclaimers.

^[2] For SO16 package: Ptot derates linearly with 8 mW/K above 70 °C.

^[3] For SSOP16 and TSSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

^[4] For DHVQFN16 package: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions		-	74HC59	5	7	4HCT59)5	Unit
				Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage			2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage			0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage			0	-	V_{CC}	0	-	V_{CC}	V
$\Delta t/\Delta V$	input transition rise and	$V_{CC} = 2.0 \text{ V}$		-	-	625	-	-	-	ns/V
	fall rate	$V_{CC} = 4.5 \text{ V}$		-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$		-	-	83	-	-	-	ns/V
T _{amb}	ambient temperature			-40	+25	+125	-40	+25	+125	°C

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	Unit	
			Min	Тур	Max	Min	Max	
74HC595			'	'			'	'
V_{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	V
V_{IL}	LOW-level	$V_{CC} = 2.0 \text{ V}$	-	8.0	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	-	1.8	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	all outputs						
		$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	V
		$I_O = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	5.9	-	V
		Q7S output						
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	4.32	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	5.81	-	5.2	-	V
		Qn bus driver outputs						
		$I_O = -6$ mA; $V_{CC} = 4.5$ V	3.84	4.32	-	3.7	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	5.81	-	5.2	-	V

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	
/ _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						'
	output voltage	all outputs						
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	٧
		$I_{O} = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	٧
		$I_{O} = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	٧
		Q7S output						
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	-	0.4	٧
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.33	-	0.4	٧
		Qn bus driver outputs						
		$I_{O} = 6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	-	0.4	٧
		$I_O = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.33	-	0.4	٧
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	-	±1.0	μΑ
OZ	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 6.0$ V; $V_O = V_{CC}$ or GND	-	-	±5.0	-	±10	μΑ
cc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	80	-	160	μА
CI	input capacitance		-	3.5	-	-	-	pF
74HCT59 / _{IH}	HIGH-level	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	٧
	input voltage							
/ _{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	V
/ _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$						
	output voltage	all outputs						
		$I_{O} = -20 \mu A$	4.4	4.5	-	4.4	-	٧
		Q7S output						
		$I_O = -4 \text{ mA}$	3.84	4.32	-	3.7	-	٧
		Qn bus driver outputs						
		$I_O = -6 \text{ mA}$	3.7	4.32	-	3.7	-	٧
/ _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$						
	output voltage	all outputs						
		I _O = 20 μA	-	0	0.1	-	0.1	٧
		Q7S output						
		$I_{O} = 4.0 \text{ mA}$	-	0.15	0.33	-	0.4	٧
		Qn bus driver outputs						
		I _O = 6.0 mA	-	0.16	0.33	-	0.4	٧
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	-	±1.0	μА

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter Conditions		-40	°C to +8	5 °C	–40 °C to	Unit	
			Min	Тур	Max	Min	Max	
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5$ V; $V_O = V_{CC}$ or GND	-	-	±5.0	-	±10	μΑ
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	80	-	160	μΑ
ΔI_{CC}	additional supply current	per input pin; I_O = 0 A; V_I = V_{CC} - 2.1 V; other inputs at V_{CC} or GND; V_{CC} = 4.5 V to 5.5 V						
		pins MR, SHCP, STCP, OE	-	150	675	-	735	μΑ
		pin DS	-	25	113	-	123	μΑ
Cı	input capacitance		-	3.5	-	-	-	pF

11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.

Symbol	Parameter	Conditions			25 °C		-40 °C 1	to +85 °C	-40 °C t	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
74HC59	5							ı			
t _{pd}	propagation	SHCP to Q7S; see Figure 9	[2]								
	delay	V _{CC} = 2 V		-	52	160	-	200	-	240	ns
		V _{CC} = 4.5 V		-	19	32	-	40	-	48	ns
		$V_{CC} = 6 V$		-	15	27	-	34	-	41	ns
		STCP to Qn; see Figure 10	[2]								
		V _{CC} = 2 V		-	55	175	-	220	-	265	ns
		V _{CC} = 4.5 V		-	20	35	-	44	-	53	ns
		$V_{CC} = 6 V$		-	16	30	-	37	-	45	ns
		MR to Q7S; see Figure 12	[3]								
		V _{CC} = 2 V		-	47	175	-	220	-	265	ns
		V _{CC} = 4.5 V		-	17	35	-	44	-	53	ns
		V _{CC} = 6 V		-	14	30	-	37	-	45	ns
t _{en}	enable time	OE to Qn; see Figure 13	[4]								
		V _{CC} = 2 V		-	47	150	-	190	-	225	ns
		V _{CC} = 4.5 V		-	17	30	-	38	-	45	ns
		$V_{CC} = 6 V$		-	14	26	-	33	-	38	ns
t _{dis}	disable time	OE to Qn; see Figure 13	[5]								
		$V_{CC} = 2 V$		-	41	150	-	190	-	225	ns
		V _{CC} = 4.5 V		-	15	30	-	38	-	45	ns
		$V_{CC} = 6 V$		-	12	27	-	33	-	38	ns
t _W	pulse width	SHCP HIGH or LOW; see Figure 9									
		V _{CC} = 2 V		75	17	-	95	-	110	-	ns
		V _{CC} = 4.5 V		15	6	-	19	-	22	-	ns
		V _{CC} = 6 V		13	5	-	16	-	19	-	ns
		STCP HIGH or LOW; see Figure 10									
		V _{CC} = 2 V		75	11	-	95	-	110	-	ns
		V _{CC} = 4.5 V		15	4	-	19	-	22	-	ns
		V _{CC} = 6 V		13	3	-	16	-	19	-	ns
		MR LOW; see Figure 12									
		V _{CC} = 2 V		75	17	-	95	-	110	-	ns
		V _{CC} = 4.5 V		15	6	-	19	-	22	-	ns
		V _{CC} = 6 V		13	5	-	16	-	19	-	ns

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.

Symbol	Parameter	Conditions			25 °C		-40 °C 1	to +85 °C	–40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	Min	Max	
t _{su}	set-up time	DS to SHCP; see Figure 10		ı				I			
		V _{CC} = 2 V		50	11	-	65	-	75	-	ns
		V _{CC} = 4.5 V		10	4	-	13	-	15	-	ns
		$V_{CC} = 6 V$		9	3	-	11	-	13	-	ns
		SHCP to STCP; see Figure 11									
		V _{CC} = 2 V		75	22	-	95	-	110	-	ns
		V _{CC} = 4.5 V		15	8	-	19	-	22	-	ns
		V _{CC} = 6 V		13	7	-	16	-	19	-	ns
t _h	hold time	DS to SHCP; see Figure 11									
		V _{CC} = 2 V		3	-6	-	3	-	3	-	ns
		V _{CC} = 4.5 V		3	-2	-	3	-	3	-	ns
		V _{CC} = 6 V		3	-2	-	3	-	3	-	ns
t _{rec}	recovery	MR to SHCP; see Figure 12									
	time	V _{CC} = 2 V		50	-19	-	65	-	75	-	ns
		V _{CC} = 4.5 V		10	-7	-	13	-	15	-	ns
		V _{CC} = 6 V		9	-6	-	11	-	13	-	ns
f _{max}	maximum frequency	SHCP or STCP; see Figure 9 and 10									
		V _{CC} = 2 V		9	30	-	4.8	-	4	-	MHz
		V _{CC} = 4.5 V		30	91	-	24	-	20	-	MHz
		V _{CC} = 6 V		35	108	-	28	-	24	-	MHz
C_{PD}	power dissipation capacitance	f_i = 1 MHz; V_I = GND to V_{CC}	[6][7]	-	115	-	-	-	-	-	pF
74HCT5	95; V _{CC} = 4.5	V to 5.5 V									
t _{pd}		SHCP to Q7S; see Figure 9	[2]	-	25	42	-	53	-	63	ns
P	delay	STCP to Qn; see Figure 10	[2]	-	24	40	-	50	-	60	ns
		MR to Q7S; see Figure 12	[3]	-	23	40	-	50	-	60	ns
t _{en}	enable time	OE to Qn; see Figure 13	[4]	-	21	35	-	44	-	53	ns
t _{dis}	disable time	OE to Qn; see Figure 13	[5]	-	18	30	-	38	-	45	ns
t _W	pulse width	SHCP HIGH or LOW; see Figure 9		16	6	-	20	-	24	-	ns
		STCP HIGH or LOW; see Figure 10		16	5	-	20	-	24	-	ns
		MR LOW; see Figure 12		20	8	-	25	-	30	-	ns
t _{su}	set-up time	DS to SHCP; see Figure 10		16	5	-	20	-	24	-	ns
	-	SHCP to STCP; see Figure 11		16	8	-	20	-	24	-	ns
t _h	hold time	DS to SHCP; see Figure 11		3	-2	-	3	-	3	-	ns

Table 7. **Dynamic characteristics** ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.

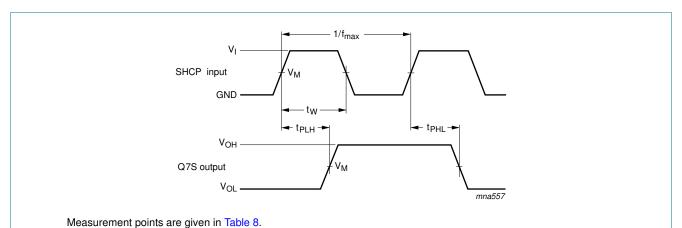
Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _{rec}	recovery time	MR to SHCP; see Figure 12	10	-7	-	13	-	15	-	ns
f _{max}	maximum frequency	SHCP and STCP; see <u>Figure 9</u> and <u>10</u>	30	52	-	24	-	20	-	MHz
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$ [6]	-	130	-	-	-	-	-	pF

- [1] Typical values are measured at nominal supply voltage.
- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [3] t_{pd} is the same as t_{PHL} only.
- [4] t_{en} is the same as t_{PZL} and t_{PZH} .
- [5] t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [6] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

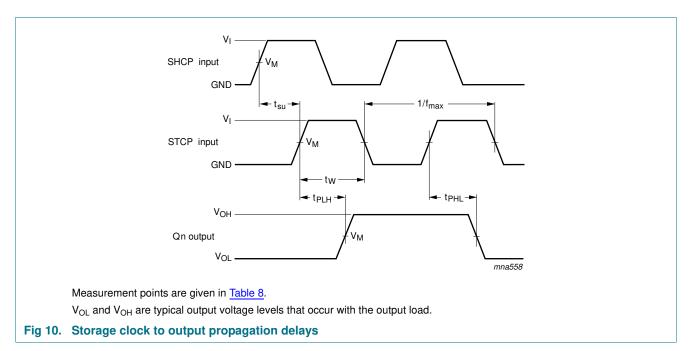
 f_i = input frequency in MHz;

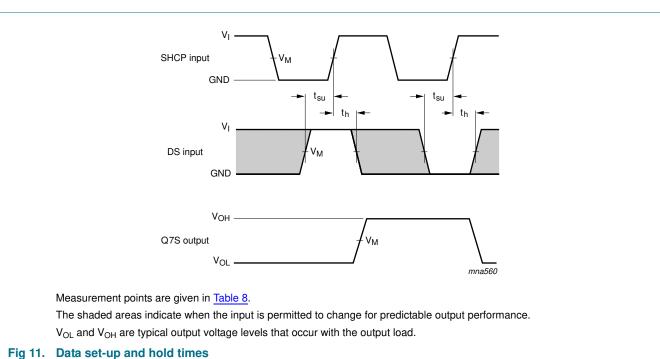
f_o = output frequency in MHz;

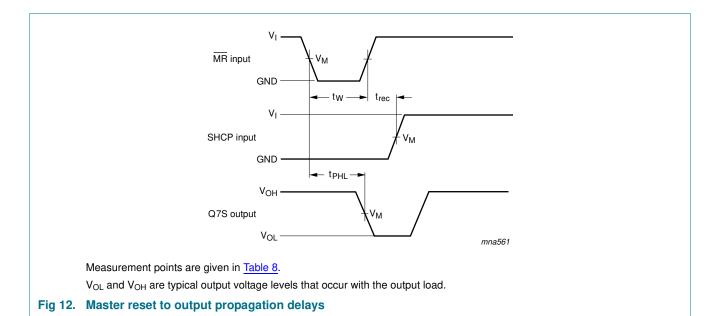

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs};$

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.


[7] All 9 outputs switching.


12. Waveforms



 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 9. Shift clock pulse, maximum frequency and input to output propagation delays

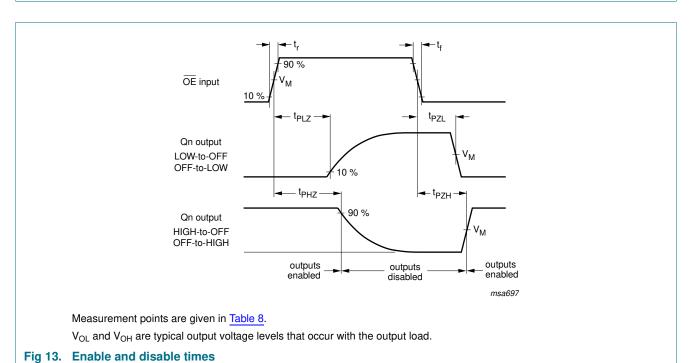
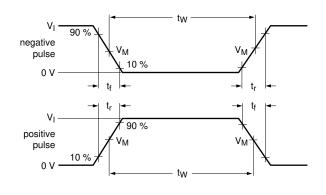
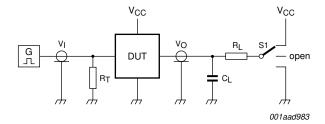




Table 8. Measurement points

Туре	Input	Output
	V _M	V _M
74HC595	0.5V _{CC}	0.5V _{CC}
74HCT595	1.3 V	1.3 V

Test data is given in Table 9.

Definitions for test circuit:

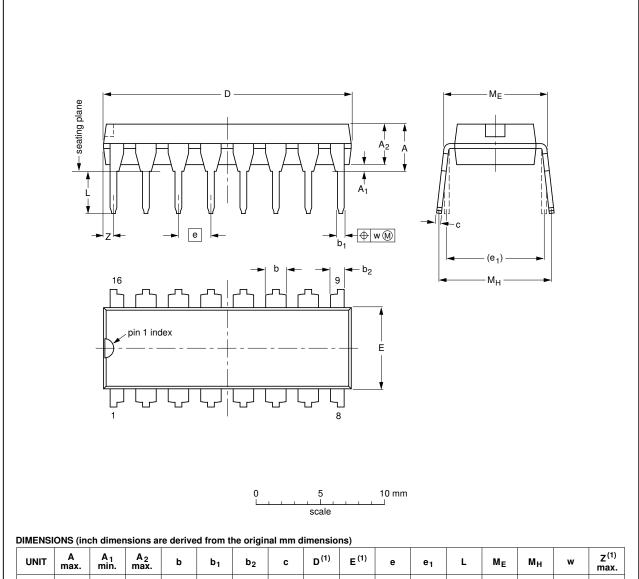
C_L = load capacitance including jig and probe capacitance.

R_L = load resistance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

S1 = test selection switch.

Fig 14. Test circuit for measuring switching times


Table 9. Test data

Туре	Input		Load		S1 position			
	VI	t _r , t _f	C _L	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
74HC595	V_{CC}	6 ns	50 pF	1 kΩ	open	GND	V _{CC}	
74HCT595	3 V	6 ns	50 pF	1 kΩ	open	GND	V_{CC}	

13. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

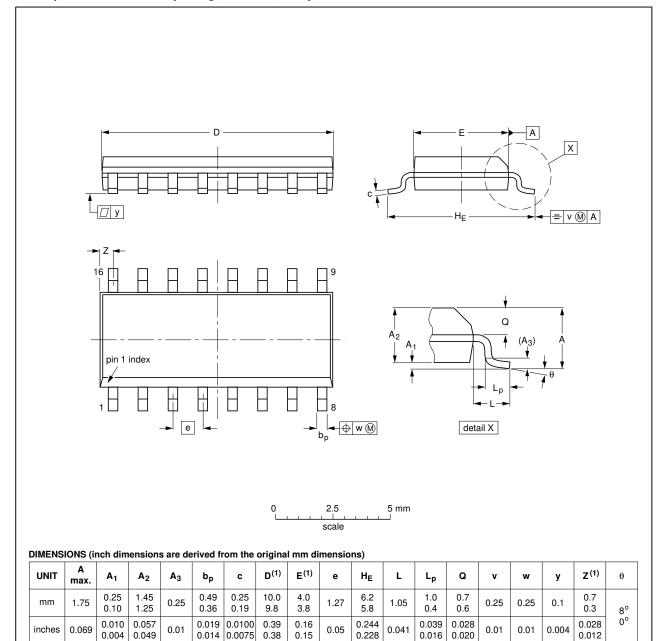
SOT38-4

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ICCUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT38-4						95-01-14 03-02-13	


Fig 15. Package outline SOT38-4 (DIP16)

74HC_HCT595

All information provided in this document is subject to legal disclaimers.

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

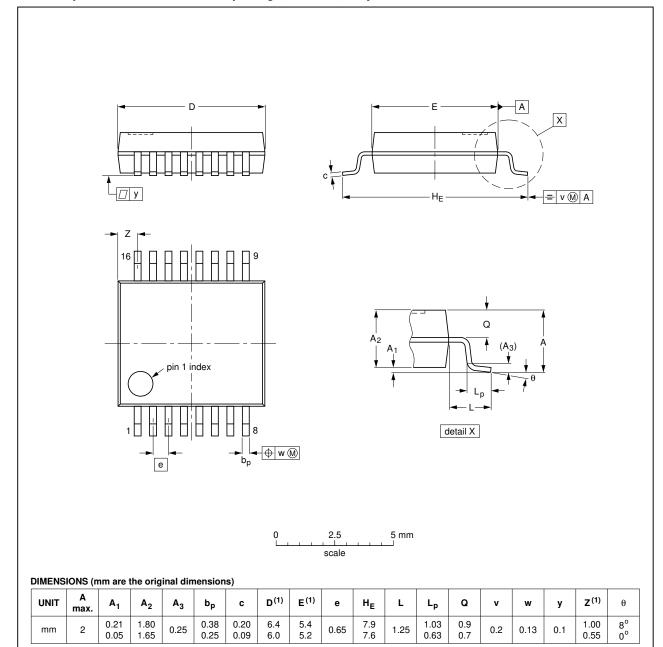

OUTLINE		REFER	EUROPEAN	ICCUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 16. Package outline SOT109-1 (SO16)

74HC_HCT595 All information provided in this document is subject to legal disclaimers.

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

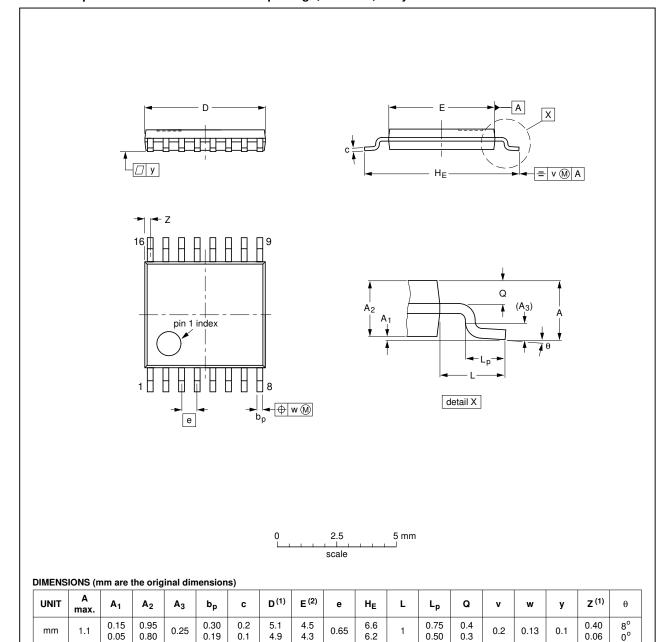

OUTLINE		REFER	EUROPEAN	ICCUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT338-1		MO-150				99-12-27 03-02-19	

Fig 17. Package outline SOT338-1 (SSOP16)

74HC_HCT595

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT403-1		MO-153				-99-12-27 03-02-18	

Fig 18. Package outline SOT403-1 (TSSOP16)

74HC_HCT595 All information provided in this document is subject to legal disclaimers.

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

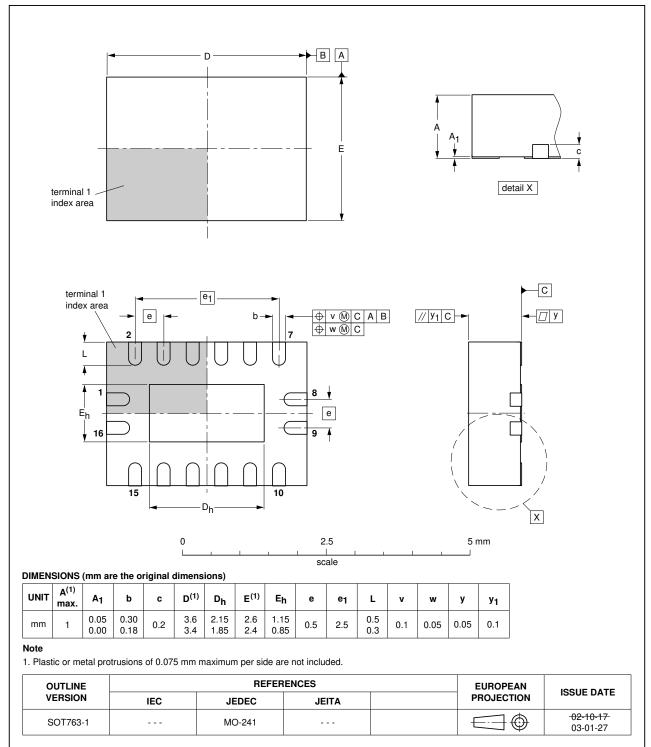


Fig 19. Package outline SOT763-1 (DHVQFN16)

74HC_HCT595

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 10. Abbreviations

Acronym	Abbreviation
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MM	Machine Model

15. Revision history

Table 11. Revision history

	-			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT595 v.6	20111212	Product data sheet	-	74HC_HCT595 v.5
Modifications:	 Legal pages 	updated.		
74HC_HCT595 v.5	20110628	Product data sheet	-	74HC_HCT595 v.4
74HC_HCT595 v.4	20030604	Product specification	-	74HC_HCT595_CNV v.3
74HC_HCT595_CNV v.3	19980604	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74HC_HCT595

74HC595; 74HCT595

8-bit serial-in, serial or parallel-out shift register with output latches; 3-state

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning
6.2	Pin description
7	Functional description 5
8	Limiting values 6
9	Recommended operating conditions 7
10	Static characteristics 7
11	Dynamic characteristics
12	Waveforms
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks23
17	Contact information 23
18	Contents 24

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.