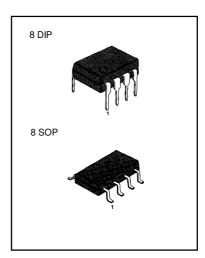
SMPS CONTROLLER

CURRENT MODE PWM CONTROLLER

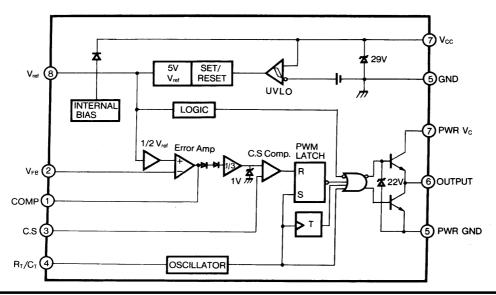
The KA3882/3/4/5 are fixed PWM controller for Off-Line and DC to DC converter applications. The internal circuits include UVLO, low start up current circuit, temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totempole output for driving a POWER MOSFET. Also KA 3882/3/4/5 provide low start up current below 0.3mA and short shutdown delay time typ. 100ns.
The KA3882 and KA3884 have UVLO threshold of 1 6V(on) and


10V(off).

The KA3883 and KA3885 are 8.4V(on) and 7.6V(off). The KA3882 and KA3883 can operate within 100% duty cycle.

The KA3884 and KA3885 within 50% by using T Flip-Flop.

FEATURES


- Low Start Current 0.2mA (typ)
- Operating Range Up To 500KHz
- Cycle by Cycle Current Limiting
- Under Voltage Lock Out With Hysteresis
- Short Shutdown Delay Time: typ.100ns
- High Current Totempole Output
- Output Swing Limiting: 22V

ORDERING INFORMATION

Device	Package	Operating Temperature
KA388X	8 DIP	0 ~ + 85 ℃
KA388XD	8 SOP	0 ~ + 85 ℃

BLOCK DIAGRAM

Rev. B

SMPS CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	30	V
Output Current	lo	+ 1	Α
Analog Inputs (pin 2, 3)	V _{I(ANA)}	- 0.3 to 6.3	V
Error Amp. Output Sink Current	I _{SINK(EA)}	10	mA
Power Dissipation	P_D	1	W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
REFERENCE SECTION						
Output Voltage	V _{REF}	T _J = 25 °C , I _O = 1mA	4.9	5.0	5.1	V
Line Regulation	Δ V _{REF}	V _{CC} = 12V to 25V	-	6	20	mV
Load Regulation	Δ V _{REF}	I _O = 1mA to 20mA	=	6	25	mV
Output Short Circuit	I _{sc}	T _a = 25 ℃	-	- 100	- 180	mA
OSILLATOR SECTION		•				
Initial Accuracy	Fosc	T _J = 25 ℃	47	52	57	KHz
Voltage Stability	ST _V	V _{CC} = 12V to 25V	=	0.2	1	%
Amplitude	V _{osc}	V _{PIN4} , Peak to Peak	=	1.7	=	V
Discharge Current	I _{DISCHG}	T _J = 25 °C , Pin4 = 2V	7.8	8.3	8.8	mA
CURRENT SENSE SECTION						
Gain	Gv	(NOTE 2, 3)	2.85	3	3.15	V/V
Maximum Input Signal	$V_{I(MAX)}$	V _{PIN1} = 5V(NOTE 2)	0.9	1.0	1.1	V
PSRR	PSRR	V _{CC} = 12V to 25V (NOTE 1, 2)	-	70	-	dB
Input Bias Current	I _{BIAS}	-	=	- 2	-10	uA
Delay to Output	T _D	V _{PIN3} = 0V to 2V (NOTE1)	-	100	200	ns

SMPS CONTROLLER

ELECTRICAL CHARACTERISTICS(Continued)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
ERROR AMPLIFIER SECTION	•	-			•	
Input Voltage	Vi	$T_{PIN1} = 2.5V$	2.42	2.50	2.58	V
Input Bias Current	I _{BIAS}	=	=	-0.3	- 2	uA
Open Loop Gain	G _{vo}	V _O = 2V to 4V (NOTE 1)	65	90	-	dB
Unity Gain Bandwidth	GBW	T _J = 25 ℃ (NOTE 1)	0.7	1	-	MHz
PSRR	PSRR	V _{CC} = 12V to 25V (NOTE 1)	60	70	=	dB
Output Sink Current	I _{SINK}	$V_{PIN2} = 2.7V$ $V_{PIN1} = 1.1V$	2	6	=	mA
Output Source Current	Isource	$V_{PIN2} = 2.3V$ $V_{PIN1} = 5.0V$	-0.5	-0.8	=	mA
Output High Voltage	V _{OH}	$V_{PIN2} = 2.3V$ R1 = 15K Ω to GND	5	6	=	V
Output Low Voltage	V _{OL}	V_{OL} $V_{PIN2} = 2.7V$ $R1 = 15K\Omega$ to Pin8		0.8	1.1	٧
OUTPUT SECTION	•	-			•	
	.,	I _{SINK} = 20mA	-	0.1	0.4	V
Output Low Level	V _{OL}	I _{SINK} = 200mA	=	1.5	2.2	V
	V _{OH}	I _{SOURCE} = 20mA	13	13.5	-	V
Output High Level	V OH	I _{SOURCE} = 200mA	12	13.5	-	V
Rise Time	t _R	T _J = 25 ℃, C1 = 1nF (NOTE 1)	-	40	100	ns
Fall Time	t _F	$T_J = 25$ °C, C1 = 1nF (NOTE 1)	-	40	100	ns
Output Voltage Swing Limit	V _{OLIM}	V _{CC} = 27V, C1 = 1nF	-	22	-	V
UNDER VOLTAGE LOCKOUT SE		•			•	
Start Threshold	V	KA3882/4	15	16	17	V
Start Threshold	V _{TH}	KA3883/5	7.8	8.4	9.0	V
Min.Operating Voltage	V _{TL}	KA3882/4	9	10	11	V
(After turn on)	VIL	KA3883/5	7.0	7.6	8.2	V

SMPS CONTROLLER

ELECTRICAL CHARACTERISTICS(Continued)

(V_{CC} = 15V, R_T = 10KΩ , C_T = 3.3nF, T_A = 0 $^{\circ}$ to +85 $^{\circ}$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
PWM SECTION						
		KA3882/3	94	96	100	%
Maximum Duty Cycle	D_{MAX}	KA3884/5	47	48	50	%
Minimum Duty Cycle	D _{MIN}	=	=	=	0	%
TOTAL STANDBY CURRENT						
Start-Up Current	I _{ST}	-	=	0.2	0.4	mA
Operating Supply Current	I _{cc}	$V_{PIN2} = V_{PIN3} = 0V$	=	11	17	mA
V _{CC} Zener Voltage	Vz	I _{CC} = 25mA	-	29	-	V

 \ast Adjust V_{CC} above the start threshold bifore setting at 15V NOTE 1. These parameters, although guaranteed, are not 100% tested in production.

- 2. Parameter measured at trip point of latch with V2 = 0V.
- 3. Gain defined as: $G_V = \Delta V_{PIN1} \Delta V_{PIN3} (V_{PIN3} = 0 \text{ to } 0.8V)$

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

CROSSVOLT™ POP™

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \mathsf{FACT} \ \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} & \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FAST}^{\circledast} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-3} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-6} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}}\text{-8} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{TinyLogic^{\mathsf{TM}}} \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.