OP282/OP482

FEATURES

High Slew Rate: $9 \mathrm{~V} / \mu \mathrm{s}$
Wide Bandwidth: 4 MHz
Low Supply Current: $250 \mu \mathrm{~A} /$ Amplifier
Low Offset Voltage: 3 mV
Low Bias Current: 100 pA
Fast Settling Time
Common-Mode Range Includes V_{+}
Unity Gain Stable

APPLICATIONS
Active Filters
Fast Amplifiers
Integrators
Supply Current Monitoring

GENERAL DESCRIPTION

The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. Slew rate exceeds $7 \mathrm{~V} / \mu \mathrm{s}$ with supply current under $250 \mu \mathrm{~A}$ per amplifier. These unity gain stable amplifiers have a typical gain bandwidth of 4 MHz .

The JFET input stage of the OP282/OP482 insures bias current is typically a few picoamps and below 500 pA over the full temperature range. Offset voltage is under 3 mV for the dual and under 4 mV for the quad.

With a wide output swing, within 1.5 volts of each supply, low power consumption and high slew rate, the OP282/OP482 are ideal for battery-powered systems or power restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for highside signal conditioning.
The OP282/OP482 are specified over the extended industrial temperature range. Both dual and quad amplifiers are available in plastic and ceramic DIP plus SOIC surface mount packages.

8-Lead Narrow-B ody SOIC
(S Suffix)

14-Lead Epoxy D IP (P Suffix)

REV. B

[^0]
OP282/OP482-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS ($\mathrm{v}_{\mathrm{s}}= \pm 15.0 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
INPUT CHARACTERISTICS Offset Voltage Offset Voltage Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Large Signal Voltage Gain Offset Voltage Drift Bias Current Drift	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}} \\ & \mathrm{~V}_{\mathrm{OS}} \\ & \mathrm{I}_{\mathrm{B}} \\ & \mathrm{I}_{\mathrm{OS}} \\ & \\ & \mathrm{CMR} \\ & \mathrm{~A}_{\mathrm{VO}} \\ & \Delta \mathrm{~V}_{\mathrm{OS}} / \Delta \mathrm{T} \\ & \Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP282 } \\ & \text { OP282, }-40 \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \text { OP482 } \\ & \text { OP482, }-40 \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text {, Note } 1 \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \text { Note } 1 \\ & \\ & -11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V},-40 \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega,-40 \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -11 \\ & 70 \\ & 20 \\ & 15 \end{aligned}$	0.2 0.2 3 1 90 10 8	$\begin{aligned} & 3 \\ & 4.5 \\ & 4 \\ & 6 \\ & 100 \\ & 500 \\ & 50 \\ & 250 \\ & +15 \end{aligned}$	mV mV mV mV pA pA pA pA V dB V/mV V / mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mathrm{pA} /{ }^{\circ} \mathrm{C}$
OUTPUT CHARACTERISTICS Output Voltage Swing Short Circuit Limit Open-Loop Output Impedance	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \mathrm{I}_{\mathrm{SC}} \\ & \mathrm{Z}_{\mathrm{OUT}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ Source Sink $\mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & \pm 13.9 \\ & 10 \\ & -12 \\ & 200 \end{aligned}$	13.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \Omega \end{aligned}$
POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range	PSRR I_{SY} V_{S}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}, \\ & -40 \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, 40 \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$	± 4.5	$\begin{aligned} & 25 \\ & 210 \end{aligned}$	$\begin{aligned} & 316 \\ & 250 \\ & \pm 18 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~A} \\ & \mathrm{~V} \end{aligned}$
DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin	$\begin{aligned} & \mathrm{SR} \\ & \mathrm{BW}_{\mathrm{P}} \\ & \mathrm{t}_{\mathrm{S}} \\ & \mathrm{GBP} \\ & \emptyset_{\mathrm{O}} \\ & \hline \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ 1\% Distortion To 0.01%		$\begin{aligned} & 9 \\ & 125 \\ & 1.6 \\ & 4 \\ & 55 \end{aligned}$		V/ $/ \mathrm{s}$ kHz $\mu \mathrm{s}$ MHz Degrees
NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density	$\begin{aligned} & e_{\mathrm{n}} \mathrm{p}-\mathrm{p} \\ & \mathrm{e}_{\mathrm{n}} \\ & \mathrm{i}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 1.3 \\ & 36 \\ & 0.01 \end{aligned}$		$\mu \mathrm{V}$ p-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{p} A \sqrt{\overline{\mathrm{~Hz}}}$

NOTE

${ }^{1} \mathrm{~T}$ he input bias and offset currents are tested at $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+85^{\circ} \mathrm{C}$. Bias and offset currents are guaranteed but not tested at $-40^{\circ} \mathrm{C}$.
Specifications subject to change without notice.
WAFER TEST LIMITS ${ }_{\text {(e }} V_{s}= \pm 15.0, V_{T A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Limit	Units
Offset Voltage	$\mathrm{V}_{\text {OS }}$	OP282	3	$m V$ max
Offset Voltage	$\mathrm{V}_{\text {OS }}$	OP482	4	$m V$ max
Input Bias Current	I_{B}	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	100	pA max
Input Offset Current	$\mathrm{I}_{\text {OS }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	50	pA max
Input Voltage Range ${ }^{1}$			$-11,+15$	V min/max
Common-Mode Rejection	CMRR	$-11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$	70	dB min
Power Supply Rejection Ratio	PSRR	$\mathrm{V}= \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	316	$\mu \mathrm{V} / \mathrm{V}$
Large Signal Voltage Gain	A_{Vo}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	20	V / mV min
Output Voltage Range	V_{O}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13.5	V min
Supply Current/Amplifier	$\mathrm{I}_{\text {SY }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	250	$\mu \mathrm{A}$ max

NOTES

Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.
${ }^{1}$ Guaranteed by CMR test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage . ± 18 V
Input Voltage ${ }^{1}$. $\pm 18 \mathrm{~V}$
Differential Input Voltage ${ }^{1}$. 36 V
Output Short-Circuit Duration Indefinite
Storage Temperature Range
P, S Packages . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
OP282A, OP482A $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ OP282G, OP482G $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range
P, S Packages . $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec) $+300^{\circ} \mathrm{C}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{2}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Units
8-Pin Plastic DIP (P)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC (S)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic DIP (P)	83	39	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC (S)	120	36	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ For supply voltages less than $\pm 18 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
${ }^{2} \theta_{\mathrm{JA}}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP; θ_{JA} is specified for device soldered in circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP282GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	$\mathrm{N}-8$
OP282GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	SO-8
OP482GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin Plastic DIP	$\mathrm{N}-14$
OP482GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin SOIC	SO-14

DICE CHARACTERISTICS

OP282 Die Size 0.063×0.060 Inch, 3,780 Sq. Mils

OP482 Die Size 0.070×0.098 Inch, 6,860 Sq. Mils

APPLICATIONS INFORMATION

The OP282 and OP482 are single and dual JFET op amps that have been optimized for high speed at low power. This combination makes these amplifiers excellent choices for battery powered or low power applications requiring above average performance. Applications benefiting from this performance combination include telecom, geophysical exploration, portable medical equipment and navigational instrumentation.

HIGH SIDE SIGNAL CONDITIONING

There are many applications that require the sensing of signals near the positive rail. OP282s and OP482s have been tested and guaranteed over a common-mode range ($-11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$) that includes the positive supply.
One application where this is commonly used is in the sensing of power supply currents. This enables it to be used in current sensing applications such as the partial circuit shown in Figure 1. In this circuit, the voltage drop across a low value resistor, such as the 0.1Ω shown here, is amplified and compared to 7.5 volts. The output can then be used for current limiting.

Figure 1. Phase Inversion

PHASE INVERSION

Most JFET-input amplifiers will invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282 and OP482 negative signals in excess of approximately 14 volts will cause phase inversion. The cause of this effect is saturation of the input stage leading to the forwardbiasing of a drain-gate diode. A simple fix for this in noninverting applications is to place a resistor in series with the noninverting input. This limits the amount of current through the forwardbiased diode and prevents the shutting down of the output stage. For the OP282/OP482, a value of $200 \mathrm{k} \Omega$ has been found to work. However, this adds a significant amount of noise.

Figure 2. OP282 Phase Reversal

ACTIVE FILTERS

The OP282 and OP482's wide bandwidth and high slew rates make either an excellent choice for many filter applications.
There are many types of active filter configurations, but the four most popular configurations are Butterworth, elliptical, Bessel, and Chebyshev. Each type has a response that is optimized for a given characteristic as shown in Table I.

PROGRAMMABLE STATE-VARIABLE FILTER

Table I.

Type	Selectivity	Overshoot	Phase	Amplitude (Pass Band)	Amplitude (Stop Band)
Butterworth Chebyshev Elliptical Bessel (Thompson)	Moderate Good Best Poor	Good Moderate Poor Best	Nonlinear Linear	Max Flat Equal Ripple Equal Ripple	Equal Ripple

The circuit shown in Figure 3 can be used to accurately program the " Q ," the cutoff frequency f_{C}, and the gain of a two pole state-variable filter. OP482s have been used in this design because of their high bandwidths, low power and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs.

The DACs shown are all used in the voltage mode so all values are dependent only on the accuracy of the DAC and not on the absolute values of the DAC's resistive ladders. This make this circuit unusually accurate for a programmable filter.
Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C 1 . This cutoff frequency can now be expressed as:

$$
f c=\frac{1}{2 \pi R_{1} C_{1}}\left(\frac{D_{1}}{256}\right)
$$

where D_{1} is the digital code for the DAC.
Gain of this circuit is set by adjusting D_{3}. The gain equation is:

$$
\text { Gain }=\frac{R_{4}}{R_{5}}\left(\frac{D_{3}}{256}\right)
$$

DAC 2 is used to set the "Q" of the circuit. Adjusting this DAC controls the amount of feedback from the bandpass node to the input summing node. Note that the digital value of the DAC is in the numerator, therefore zero code is not a valid operating point.

$$
Q=\frac{R_{2}}{R_{3}}\left(\frac{256}{D_{2}}\right)
$$

Figure 3.

OP282/OP482 SPICE MACRO MODEL
Figure 4 shows the OP282 SPICE macro model. The model for the OP482 is similar to that of the OP282, but there are some
minor changes in the circuit values. Contact ADI for a copy of the latest SPICE model diskette for both listings.

Figure 4.

OP282 SPICE MACRO MODEL						
* Node assignments						
*			noninverting input			
*			inverting input			
*			positive supply			
*						ative supply
*						output
*						
.SUBC	T O	282	12	99	50	30
*						
* INPUT STAGE \& POLE AT 15 MHZ						
R1	1	3	5E11			
R2	2	3	5E11			
R3	5	50	3871.3			
R4	6	50	3871.3			
CIN	1	2	5E-12			
C2	5	6	$1.37 \mathrm{E}-12$			
I1	99	4	0.1E-3			
IOS	1	2	5E-13			
EOS	7	1	POLY(1) 2124 200E-6 1			
J1	5	2	4	JX		
J2	6	7	4	JX		
*						
EREF	98	0	24	01		
*						
* GAIN STAGE \& POLE AT 124 HZ						
R5	9	98	1.16 E 8			
C3	9	98	$1.11 \mathrm{E}-11$			
G1	98	9	$56 \quad 2.58 \mathrm{E}-4$			
V2	99	8	1.2			
V3	10	50	1.2			
D 1	9	8	DX			
D2	10	9	DX			
*						
* NEGATIVE ZERO AT 4 MHZ						
R6	11	12	1E6			
R7	12	98	1			
C4	11	12	$39.8 \mathrm{E}-15$			
E2	11	98	9	24		
*						
* POLE AT 15 MHZ						
*						
R8	13	98	1E6			
C5	13	98	10.6E-15			
G2	98	13	12	24		
*						
* POLE AT 15 MHZ						
*						
R9	14	98	1E6			
C6	14	98	10.6E-15			
G3	98	14	13	24		
*						
* POLE AT 15 MHZ						
*						
R19	19	98	1E6			
C13	19	98	10.6E-15			
G11	98	19	14	24		

*
* COMMON-MODE GAIN NETWORK WITH ZERO AT 11 KHZ
*

R21	20	21	1 E6	
R22	21	98	1	
C14	20	21	$14.38 \mathrm{E}-12$	
E13	98	20	3	2431.62

*
* POLE AT 15 MHZ
*

R23	23	98	1 E 6	
C15	23	98	$10.6 \mathrm{E}-15$	
G15	98	23	19	$241 \mathrm{E}-6$

*
* OUTPUT STAGE
*

R25	24	99	5 E 6		
R26	24	50	5 E 6		
ISY	99	50	$107 \mathrm{E}-6$		
R27	29	99	700		
R28	29	50	700		
L5	29	30	$1 \mathrm{E}-8$	29	$1.43 \mathrm{E}-3$
G17	27	50	23	23	$1.43 \mathrm{E}-3$
G18	28	50	29	23	$1.43 \mathrm{E}-3$
G19	29	99	99	50	$1.43 \mathrm{E}-3$

V4 $25 \quad 29 \quad 2.8$
$\begin{array}{llll}\text { V5 } & 29 & 26 & 3.5\end{array}$
D3 $23 \quad 25$ DX
D4 $26 \quad 23$ DX
D5 $99 \quad 27$ DX
D6 9928 DX
D7 $50 \quad 27 \quad$ DY
D8 $\quad 50 \quad 28 \quad$ DY

* MODELS USED
*

.MODEL JX PJF (BETA $=3.34 \mathrm{E}-4$
VTO = -2.000 IS = 3E-12)
.MODEL DX D (IS = 1E-15)
.MODEL DY D $(\mathrm{IS}=1 \mathrm{E}-15 \mathrm{BV}=50)$
.ENDS OP282

Figure 5. Open-Loop Gain, Phase vs. Frequency

Figure 6. Closed-Loop Gain vs.
Frequency

Figure 7. OP482 Phase Margin and Gain Bandwidth Product vs.
Temperature

Figure 8. Open-Loop Gain (V/mV)

Figure 9. OP282/OP482 Slew Rate vs. Temperature

Figure 10. Voltage Noise Density vs. Frequency

Figure 11. Small Signal Overshoot vs. Load Capacitance

Figure 12. OP282 Input Bias Current vs. Temperature

Figure 13. OP282 Input Bias Current vs. Common-Mode Voltage

Figure 14. Relative Supply Current vs. Supply Voltage

Figure 15. Relative Supply Current vs. Temperature

Figure 16. OP282/OP482 Short Circuit Current vs. Temperature

Figure 17. Output Voltage Swing vs. Supply Voltage

Figure 18. Maximum Output Voltage vs. Load Resistance

Figure 19. Maximum Output Swing vs. Frequency

Figure 20. OP482 Closed-Loop Output Impedance vs. Frequency

Figure 21. OP282 Power Supply
Rejection Ratio (PSRR) vs. Frequency

Figure 22. OP282 Common-Mode Rejection Ratio (CMRR) vs. Frequency

Figure 23. $V_{\text {OS }}$ Distribution " P " Package

Figure 24. Vos Distribution "Z" Package

Figure 25. OP282 TCV $V_{\text {os }}\left(\mu V^{\rho} C\right)$ Distribution "P" Package

Figure 26. OP282 TCV os $\left(\mu V^{\circ} C\right)$ Distribution "Z" Package

Figure 27. OP482 TCV OS Distribution "Z" Package

Figure 28. TCV ${ }_{\text {os }}$ Distribution "P" Package

Figure 29. OP482 Vos Distribution "Z" Package

Figure 30. OP482 Vos Distribution "P" Package

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

This datasheet has been download from: www.datasheetcatalog.com

Datasheets for electronics components.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

