NEC

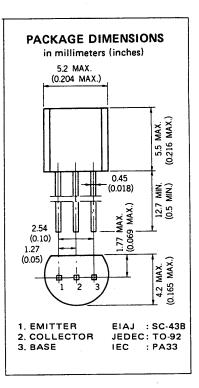
PNP SILICON TRANSISTOR 2SA952

DESCRIPTION

The 2SA952 is designed for use in output stage of portable radio and cassette type tape recorder, general purpose applications.

FEATURES

• High total power dissipation.


 $P_{T} = 600 \text{ mW}$

• High h_{FE} and low $V_{CE(sat)}$. $h_{FE} (I_C = -100 \text{ mA}) : 200 \text{ TYP}.$ V_{CE(sat)} (-700 mA) : -0.25 V TYP.

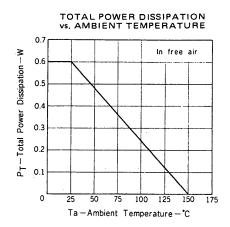
ABSOLUTE MAXIMUM RATINGS . .

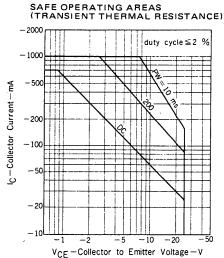
.

Maximum T	emperatures						
Storage Temperature							
Junction Temperature + 150 °C Maximum							
Maximum Power Dissipation (Ta = 25 $^{\circ}$ C)							
Total F	Power Dissipation 600	mW					
Maximum Voltages and Currents (Ta = 25 $^{\circ}$ C)							
V _{CBO}	Collector to Base Voltage	v					
V _{CEO}	Collector to Emitter Voltage25	v					
V _{EBO}	Emitter to Base Voltage	V					
Ic	Collector Current	mΑ					
ł _B	Base Current150	mA					

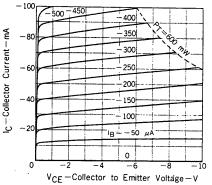
ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1*	DC Current Gain	90	200	400	-	V _{CE} = -1.0 V, I _C = -100 mA
hFE2*	DC Current Gain	50	100		-	V _{CE} = -1.0 V, I _C = -700 mA
C _{ob}	Collector to Base Capacitance		17	40	рF	V _{CB} = - 6.0 V, 1 _E = 0 f = 1.0 MHz
fT	Gain Bandwidth Product	50	160		MHz	$V_{CE} = -6.0 V, i_{E} = 10 mA$
V _{BE} *	Base to Emitter Voltage	-600	-640	-700	mV	$V_{CE} = -6.0 V, I_{C} = -10 mA$
V _{CE(sat)} *	Collector Saturation Voltage		-0.25	-0.6	V ¹	I _C =−700 mA, I _B =−70 mA
V _{BE(sat)} *	Base Saturation Voltage		-0.95	-1.2	v	l _C =-700 mA, i _B =-70 mA
ICBO	Collector Cutoff Current			-100	nA	$V_{CB} = -30 V, I_{E} = 0$
IEBO	Emitter Cutoff Current			-100	nA	$V_{EB} = -5.0 V, I_{C} = 0$

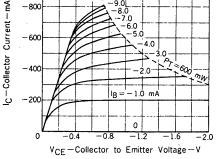

PW \leq 350 μ s, duty cycle \leq 2.0 % * Pulsed -


Classification of hFE1

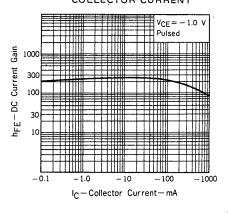
Rank	м	L	к	
Range	90 - 180	135 – 270	200 – 400	


 h_{FE} Test Conditions : $V_{CE} = -1.0 V$, $I_C = -100 mA$

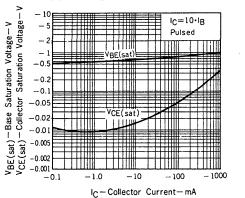
TYPICAL CHARACTERISTICS (Ta = 25 °C unless otherwise noted)



COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE



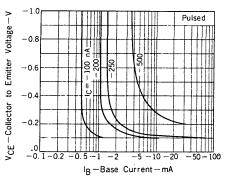
COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE



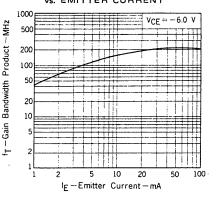
COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE - 1000 VCE = - 6.0 V - 500 Pulsed Current – mA - 200 - 100 - 50 - 20 ---Collector -10 ò -2 -0.5 -0.2

DC CURRENT GAIN vs. COLLECTOR CURRENT

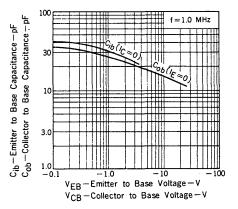
BASE AND COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT


COLLECTOR TO EMITTER VOLTAGE vs. BASE CURRENT

-0.6 -0.7 -0.8 -0.9


 V_{BE} -Base to Emitter Voltage-V

-1.0 - 1.1


-0.1 -0.5

GAIN BANDWIDTH PRODUCT vs. EMITTER CURRENT

NEC

EMITTER TO BASE AND COLLECTOR TO BASE CAPACITANCE vs. REVERSE VOLTAGE

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.