

规格书编号

SPEC NO:

产品规格书 SPECIFICATION

CUSTOMER 客 户:						
PRODUCT 产品:	SAW RESONATOR					
MODEL NO 型 号:	HDR360M S3					
PREPARED 编 制:	CHECKED 审 核:					
APPROVED 批准:	D A T E 日 期:	2012-7-26				
客户确认 CUSTOMER RECEIVED:						
审核 CHECKED	批准 APPROVED	日期 DATE				

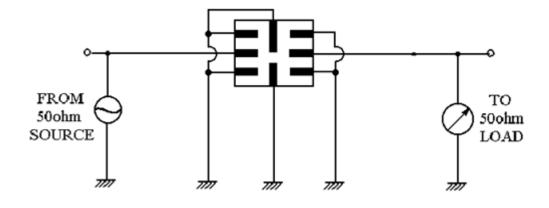
无锡市好达电子有限公司 Shoulder Electronics Limited

更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

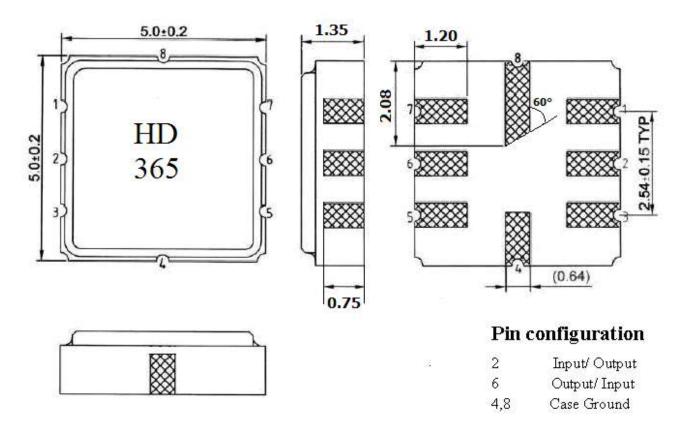
1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	30V		
AC Voltage Vpp	10V50Hz/60Hz		
Operation temperature	-40°C to +85°C		
Storage temperature	-45°C to +85°C		
RF Power Dissipation	0dBm		

Electronic Characteristics


Item		Unites	Minimum	Typical	Maximum	Sym	
Center Frequency		MHz	359.925	360.000	360.075	fc	
Insertion Loss (in 50ohm system)		dB		1.5	2.2	IL	
Quality Factor Unloaded Q			8000	13900		Qu	
50 Ω LoadedQ		50 Ω LoadedQ		1000	2000		QL
Temperature	Tu	rnover Temperature	$^{\circ}$	10	25	40	То
Stability	Τι	rnover Frequency	MHz		fc		fo
	Freque	ncy Temperature Coefficient	ppm/°C₂		0.037		FTC
Frequency Aging Absolute Value during the First year		ppm/yr		≤10	,	$ f_A $	
DC Insulation Resistance between any two Pins		ΜΩ	1.0				
	Mo	tional Resistance	Ω		19	26	Rm
RF Equivalent Motinal Inductance		□Н		125.72		Lm	
RLC Model	Mo	tinal Capacitance	fF		1.2914		Cm
	Pin 1t	o pin2 Static Capacitance	pF	1.5	2.0	2.5	Co
	Trans	ducer Static Capacitance	pF		1.7		Ср

3. TEST CIRCUIT

4. DIMENSION

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to $+85\,^{\circ}\text{C}$ for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-2 Low temperature exposure

Subject the device to -20° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-3 Temperature cycling

Subject the device to a low temperature of -40°C for 30 minutes. Following by a high temperature of $+80^{\circ}\text{C}$ for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in table 1.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in table 1.

5-5 Solderability

Subject the device terminals into the solder bath at $245^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in table 1.

SAW RESONATOR

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in table 1.

5-7 Vibration

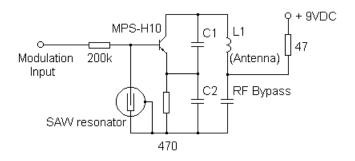
Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in table 1.

6. REMARK

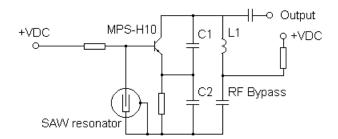
6.1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning


Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering


Only leads of component may be soldered. Please avoid soldering another part of component.

7.TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

