SHOULDER

规格书编号 SPEC NO:

产品规格书 SPECIFICATION

CUSTOMER 客户:		
PRODUCT 产品:	SAW RESONATOR	
MODEL NO 型 号:	HDR372.5M S20	
PREPARED 编 制:	CHECKED 审 核:	
APPROVED 批 准:	D A T E 日 期:	2011-5-5

客户确认 CUSTOMER RECEIVED:			
审核 CHECKED	批准 APPROVED	日期 DATE	

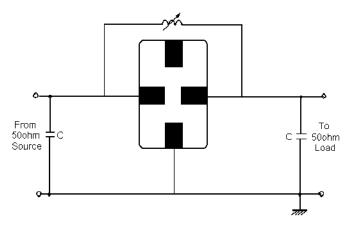
无锡市好达电子有限公司 Shoulder Electronics Limited

更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

1. SCOPE

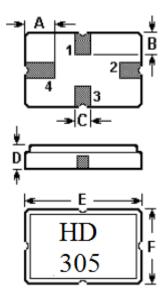
This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

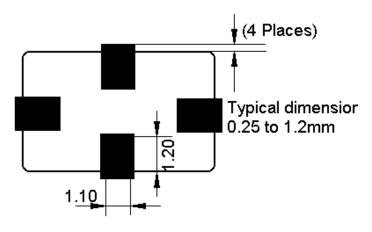
DC Voltage VDC	30V
AC Voltage Vpp	10V50Hz/60Hz
Operation temperature	-40°C to +85°C
Storage temperature	-45°℃ to +85°℃
RF Power Dissipation	0dBm

Electronic Characteristics

Item		Unites	Minimum	Typical	Maximum
Center Frequency		MHz	372.425	372.500	372.575
Insertion Loss		dB		1.7	2.5
Quality Factor Unload Q				11000	
50Ω Loaded Q				1376	
Temperature	Turnover Temperature	°C	10	25	40
Stability	Freq.temp.Coefficient	ppm/°C2		0.032	
Frequency Aging		ppm/yr		<±10	
DC. Insulation Resistance		$\mathbf{M} \Omega$	1.0		
	Motional Resistance R1	Ω		23	26
RF Equivalent	Motional Inductance L1	μH		99.97	
RLC Model	Motional Capacitance C1	fF		1.826	
Transducer Static Capacitance		pF		1.7	


3. TEST CIRCUIT

4. DIMENSION


4-1 Typical dimension(unit: mm)

Pin	Configuration	
1	Input / Output	
3	Output / Input	
2/4	Case Ground	

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2±0.1	D	1.4±0.1
В	0.8±0.1	E	5.0±0.1
С	0.5	F	3.5±0.1

4-2 Typical circuit board land patter

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to $+85^{\circ}$ C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-2 Low temperature exposure

Subject the device to -20° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in table 1.

5-3 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+80^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in table 1.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in table 1.

5-5 Solderability

Subject the device terminals into the solder bath at $245^{\circ}C \pm 5^{\circ}C$ for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in table 1.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in table 1.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in table 1.

- 5-8 Lead fatigue
 - 5-8-1 Pulling test

Weight along with the direction of lead without an shock 1kg. The device shall satisfy all the initial Characteristics.

5-8-2 Bending test

Lead shall be subject to withstand against 90° C bending with 450g weight in the direction of thickness. This operation shall be done toward both directions. The device shall show no evidence of damage and shall satisfy all the initial electrical characteristics.

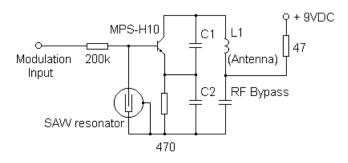
6. REMARK

6.1 Static voltage

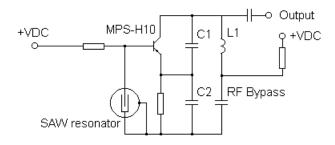
Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please


avoid ultrasonic cleaning

6.3 Soldering


Only leads of component may be soldered. Please avoid soldering another part of component.

7.TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

